Summary: | We investigated the liquid crystal (LC) alignment behaviors of butyl hydroxybenzoate-substituted polystyrene (PBHB#; # = 20, 40, 60, 80, and 100, where # indicates the molar fraction of butyl hydroxybenzoate in the side chain), methyl hydroxybenzoate-substituted polystyrene (PMHB100), and ethyl hydroxybenzoate-substituted polystyrene (PEHB100). Generally, LC cells made employing polymer films having longer alkyl groups in the side chain show vertical LC alignment. For instance, a LC cell fabricated with the PMHB100 film showed random planar LC alignment, while the LC cells made from the PEHB100 and PBHB100 films exhibited vertical LC alignment. Moreover, LC cells prepared from a polymer film having a higher molar content of butyl hydroxybenzoate in the side chain exhibited vertical LC alignment. The observed vertical LC alignment behaviors are closely related to the surface energy of these polymer films. For instance, vertical LC alignment was observed when the surface energy of the polymer film was less than ~43.86 mJ/m<sup>2</sup>, which could result from the nonpolar alkyl groups of the alkyl hydroxybenzoate moiety. The LC cell prepared from PBHB100 as the LC alignment layer showed good electro-optical characteristics such as voltage holding ratio, residual DC voltage, and alignment stability at 200 °C.
|