Improving Numerical Accuracy in Time-Domain Simulation for Power Electronics Circuits

In time-domain simulations of power system transients, trapezoidal integration with fixed step-size is the most common method due to its accuracy and ease of implementation. Discontinuities occurring within fixed time-step when simulating power electronics circuits, may cause numerical oscillations...

Full description

Bibliographic Details
Main Authors: Willy Nzale, Jean Mahseredjian, Xiaopeng Fu, Ilhan Kocar, Christian Dufour
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Open Access Journal of Power and Energy
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9400393/
Description
Summary:In time-domain simulations of power system transients, trapezoidal integration with fixed step-size is the most common method due to its accuracy and ease of implementation. Discontinuities occurring within fixed time-step when simulating power electronics circuits, may cause numerical oscillations and errors. Several methods are available in the literature for interpolation and handling of discontinuities. This paper intends to analyze how accuracy is affected by existing techniques for handling discontinuities in time-domain simulations based on the trapezoidal integration method. New algorithms are proposed to improve accuracy.
ISSN:2687-7910