A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation

A nonlocal boundary value problem for the fractional version of the Rayleigh–Stokes equation, well-known in fluid dynamics, is studied. Namely, the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>...

Full description

Bibliographic Details
Main Authors: Ravshan Ashurov, Oqila Mukhiddinova, Sabir Umarov
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/6/490
_version_ 1797594721806188544
author Ravshan Ashurov
Oqila Mukhiddinova
Sabir Umarov
author_facet Ravshan Ashurov
Oqila Mukhiddinova
Sabir Umarov
author_sort Ravshan Ashurov
collection DOAJ
description A nonlocal boundary value problem for the fractional version of the Rayleigh–Stokes equation, well-known in fluid dynamics, is studied. Namely, the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>β</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>+</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is an arbitrary real number, is proposed instead of the initial condition. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, then we have the inverse problem in time, called the backward problem. It is well-known that the backward problem is ill-posed in the sense of Hadamard. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then the corresponding non-local problem becomes well-posed in the sense of Hadamard, and moreover, in this case a coercive estimate for the solution can be established. The aim of this work is to find values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, which separates two types of behavior of the semi-backward problem under consideration. We prove the following statements: if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>, then the problem is well-posed; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, then depending on the eigenvalues of the elliptic part of the equation, for the existence of a solution an additional condition on orthogonality of the right-hand side of the equation and the boundary function to some eigenfunctions of the corresponding elliptic operator may emerge.
first_indexed 2024-03-11T02:26:14Z
format Article
id doaj.art-3a2c16724896453bb3a1310e74c35b78
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T02:26:14Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-3a2c16724896453bb3a1310e74c35b782023-11-18T10:30:01ZengMDPI AGFractal and Fractional2504-31102023-06-017649010.3390/fractalfract7060490A Non-Local Problem for the Fractional-Order Rayleigh–Stokes EquationRavshan Ashurov0Oqila Mukhiddinova1Sabir Umarov2Institute of Mathematics, Uzbekistan Academy of Science, University Str., 9, Olmazor District, Tashkent 100174, UzbekistanInstitute of Mathematics, Uzbekistan Academy of Science, University Str., 9, Olmazor District, Tashkent 100174, UzbekistanDepartment of Mathematics, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USAA nonlocal boundary value problem for the fractional version of the Rayleigh–Stokes equation, well-known in fluid dynamics, is studied. Namely, the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>β</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>+</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is an arbitrary real number, is proposed instead of the initial condition. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, then we have the inverse problem in time, called the backward problem. It is well-known that the backward problem is ill-posed in the sense of Hadamard. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then the corresponding non-local problem becomes well-posed in the sense of Hadamard, and moreover, in this case a coercive estimate for the solution can be established. The aim of this work is to find values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, which separates two types of behavior of the semi-backward problem under consideration. We prove the following statements: if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>, then the problem is well-posed; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, then depending on the eigenvalues of the elliptic part of the equation, for the existence of a solution an additional condition on orthogonality of the right-hand side of the equation and the boundary function to some eigenfunctions of the corresponding elliptic operator may emerge.https://www.mdpi.com/2504-3110/7/6/490Rayleigh–Stokes problemnon-local problemfractional derivativeMittag–Leffler functionFourier method
spellingShingle Ravshan Ashurov
Oqila Mukhiddinova
Sabir Umarov
A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
Fractal and Fractional
Rayleigh–Stokes problem
non-local problem
fractional derivative
Mittag–Leffler function
Fourier method
title A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
title_full A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
title_fullStr A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
title_full_unstemmed A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
title_short A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation
title_sort non local problem for the fractional order rayleigh stokes equation
topic Rayleigh–Stokes problem
non-local problem
fractional derivative
Mittag–Leffler function
Fourier method
url https://www.mdpi.com/2504-3110/7/6/490
work_keys_str_mv AT ravshanashurov anonlocalproblemforthefractionalorderrayleighstokesequation
AT oqilamukhiddinova anonlocalproblemforthefractionalorderrayleighstokesequation
AT sabirumarov anonlocalproblemforthefractionalorderrayleighstokesequation
AT ravshanashurov nonlocalproblemforthefractionalorderrayleighstokesequation
AT oqilamukhiddinova nonlocalproblemforthefractionalorderrayleighstokesequation
AT sabirumarov nonlocalproblemforthefractionalorderrayleighstokesequation