On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations

Unimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem $$ u^{\prime}(t)=\ell(u)(t)+q(t), \ \ \ \ u(a)=h(u)+c, $$ where $\ell:C([a,b];\mathbb{R})\rightarrow L([a,b];\mathbb{R})$ is a linear bounded operator, $h:C([a,b];\mathbb{R})\...

Full description

Bibliographic Details
Main Authors: A. Lomtatidze, Zdenek Oplustil
Format: Article
Language:English
Published: University of Szeged 2004-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=198
_version_ 1797830768137863168
author A. Lomtatidze
Zdenek Oplustil
author_facet A. Lomtatidze
Zdenek Oplustil
author_sort A. Lomtatidze
collection DOAJ
description Unimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem $$ u^{\prime}(t)=\ell(u)(t)+q(t), \ \ \ \ u(a)=h(u)+c, $$ where $\ell:C([a,b];\mathbb{R})\rightarrow L([a,b];\mathbb{R})$ is a linear bounded operator, $h:C([a,b];\mathbb{R})\rightarrow \mathbb{R}$ is a linear bounded functional, $q\in L([a,b];\mathbb{R})$ and $c>0$.
first_indexed 2024-04-09T13:41:25Z
format Article
id doaj.art-3a2eab7cd9f64423a094dad1704b7c8f
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:25Z
publishDate 2004-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-3a2eab7cd9f64423a094dad1704b7c8f2023-05-09T07:52:57ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752004-08-0120031612110.14232/ejqtde.2003.6.16198On nonnegative solutions of a certain boundary value problem for first order linear functional differential equationsA. Lomtatidze0Zdenek Oplustil1Institute of Mathematics, Academy of Sciences of the Czech RepublicBrno University of Technology, Brno, Czech RepublicUnimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem $$ u^{\prime}(t)=\ell(u)(t)+q(t), \ \ \ \ u(a)=h(u)+c, $$ where $\ell:C([a,b];\mathbb{R})\rightarrow L([a,b];\mathbb{R})$ is a linear bounded operator, $h:C([a,b];\mathbb{R})\rightarrow \mathbb{R}$ is a linear bounded functional, $q\in L([a,b];\mathbb{R})$ and $c>0$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=198
spellingShingle A. Lomtatidze
Zdenek Oplustil
On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
Electronic Journal of Qualitative Theory of Differential Equations
title On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
title_full On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
title_fullStr On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
title_full_unstemmed On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
title_short On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
title_sort on nonnegative solutions of a certain boundary value problem for first order linear functional differential equations
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=198
work_keys_str_mv AT alomtatidze onnonnegativesolutionsofacertainboundaryvalueproblemforfirstorderlinearfunctionaldifferentialequations
AT zdenekoplustil onnonnegativesolutionsofacertainboundaryvalueproblemforfirstorderlinearfunctionaldifferentialequations