Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles
Objective(s): The wide scale use of Zinc oxide nanoparticles (ZnO NPs) in the consumer market world makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. Therefore, the aim of the present study is to assess renal toxicity potential of ZnO and Polyethylene glycol...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mashhad University of Medical Sciences
2017-01-01
|
Series: | Nanomedicine Journal |
Subjects: | |
Online Access: | http://nmj.mums.ac.ir/article_8054_16564dd6d4a3055bbcf5723780b454b4.pdf |
_version_ | 1828484783946072064 |
---|---|
author | Banafsheh Raisi Dehkourdi Soheil Fatahian Kahin Shahanipoor |
author_facet | Banafsheh Raisi Dehkourdi Soheil Fatahian Kahin Shahanipoor |
author_sort | Banafsheh Raisi Dehkourdi |
collection | DOAJ |
description | Objective(s): The wide scale use of Zinc oxide nanoparticles (ZnO NPs) in the consumer market world makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. Therefore, the aim of the present study is to assess renal toxicity potential of ZnO and Polyethylene glycol Coated ZnO Nanoparticles in rat.Materials and Methods: Co-precipitation chemical method was used in order to synthesize ZnO nanoparticles. The synthesized nanoparticles were coated with PEG (Polyethylene glycol) and the coating interactions were investigated by FTIR (Fourier Transform Infrared Spectroscopy). Structural properties of ZnO NPs were evaluated by TEM (Transmission Electron Microscope) and XRD (X Ray Diffraction). Toxicity assessment of ZnO and PEG coated ZnO nanoparticles were studied in rat by intra peritoneal injections during a one-month. Renal factors (Creatinine, Uric acid and Blood Urea Nitrogen) were measured 15 and 30 days post injection.Results: The synthesized nanoparticles were single phase and have spinel structure. Their size distribution was around 18 nm. Some kidney factors were changed due to the injection of both uncoated and coated nanoparticles (especially in groups received concentrations of more than 100 mg per kg of body weight). Renal factors changes were more considerable in groups received ZnO NPs in comparison with those received PEG coated ZnO NPs. Chemical toxicity studies showed that there was no irreversible effect in the groups received concentrations less than 200 mg/kg (mg per kg of body weight).Conclusion: The results indicated that renal factors were changed during 15 days post injection, especially in groups received high doses (200 mg/kg). The results of measurements 30 days post injection showed less change in comparison with the control and this indicates that there was no irreversible effect on kidney. Moreover, PEG coated nanoparticles were less toxic in comparison with Uncoated ZnO NPs. |
first_indexed | 2024-12-11T09:01:43Z |
format | Article |
id | doaj.art-3a2eea802fcf466d9af30d8411816bd2 |
institution | Directory Open Access Journal |
issn | 2322-3049 2322-5904 |
language | English |
last_indexed | 2024-12-11T09:01:43Z |
publishDate | 2017-01-01 |
publisher | Mashhad University of Medical Sciences |
record_format | Article |
series | Nanomedicine Journal |
spelling | doaj.art-3a2eea802fcf466d9af30d8411816bd22022-12-22T01:13:44ZengMashhad University of Medical SciencesNanomedicine Journal2322-30492322-59042017-01-0141556010.22038/nmj.2017.80548054Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticlesBanafsheh Raisi Dehkourdi0Soheil Fatahian1Kahin Shahanipoor2Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, IranDepartment of Biosciences, Falavarjan Branch, Islamic Azad University, Isfahan, IranDepartment of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, IranObjective(s): The wide scale use of Zinc oxide nanoparticles (ZnO NPs) in the consumer market world makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. Therefore, the aim of the present study is to assess renal toxicity potential of ZnO and Polyethylene glycol Coated ZnO Nanoparticles in rat.Materials and Methods: Co-precipitation chemical method was used in order to synthesize ZnO nanoparticles. The synthesized nanoparticles were coated with PEG (Polyethylene glycol) and the coating interactions were investigated by FTIR (Fourier Transform Infrared Spectroscopy). Structural properties of ZnO NPs were evaluated by TEM (Transmission Electron Microscope) and XRD (X Ray Diffraction). Toxicity assessment of ZnO and PEG coated ZnO nanoparticles were studied in rat by intra peritoneal injections during a one-month. Renal factors (Creatinine, Uric acid and Blood Urea Nitrogen) were measured 15 and 30 days post injection.Results: The synthesized nanoparticles were single phase and have spinel structure. Their size distribution was around 18 nm. Some kidney factors were changed due to the injection of both uncoated and coated nanoparticles (especially in groups received concentrations of more than 100 mg per kg of body weight). Renal factors changes were more considerable in groups received ZnO NPs in comparison with those received PEG coated ZnO NPs. Chemical toxicity studies showed that there was no irreversible effect in the groups received concentrations less than 200 mg/kg (mg per kg of body weight).Conclusion: The results indicated that renal factors were changed during 15 days post injection, especially in groups received high doses (200 mg/kg). The results of measurements 30 days post injection showed less change in comparison with the control and this indicates that there was no irreversible effect on kidney. Moreover, PEG coated nanoparticles were less toxic in comparison with Uncoated ZnO NPs.http://nmj.mums.ac.ir/article_8054_16564dd6d4a3055bbcf5723780b454b4.pdfNontoxicityPEG coatedRenal factorsZnO nanoparticle |
spellingShingle | Banafsheh Raisi Dehkourdi Soheil Fatahian Kahin Shahanipoor Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles Nanomedicine Journal Nontoxicity PEG coated Renal factors ZnO nanoparticle |
title | Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles |
title_full | Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles |
title_fullStr | Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles |
title_full_unstemmed | Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles |
title_short | Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles |
title_sort | synthesis characterization and renal toxicity of zno and polyethylene glycol coated zno nanoparticles |
topic | Nontoxicity PEG coated Renal factors ZnO nanoparticle |
url | http://nmj.mums.ac.ir/article_8054_16564dd6d4a3055bbcf5723780b454b4.pdf |
work_keys_str_mv | AT banafshehraisidehkourdi synthesischaracterizationandrenaltoxicityofznoandpolyethyleneglycolcoatedznonanoparticles AT soheilfatahian synthesischaracterizationandrenaltoxicityofznoandpolyethyleneglycolcoatedznonanoparticles AT kahinshahanipoor synthesischaracterizationandrenaltoxicityofznoandpolyethyleneglycolcoatedznonanoparticles |