A 7–13 GHz 10 W High-Efficiency MMIC Power Amplifier in 0.25 µm GaN HEMT Process

With the increase in applications of the millimeter wave spectrum for phased array radar systems, mobile 7–13 communication systems, and satellite systems, the demand for a wideband, high-efficiency, high-power monolithic microwave integrated circuit (MMIC) power amplifier (PA) is increasing. In thi...

Full description

Bibliographic Details
Main Authors: Aizhen Hu, Yongqing Leng, Xin Qiu, Tongyao Luan, Yatao Peng
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/21/10872
Description
Summary:With the increase in applications of the millimeter wave spectrum for phased array radar systems, mobile 7–13 communication systems, and satellite systems, the demand for a wideband, high-efficiency, high-power monolithic microwave integrated circuit (MMIC) power amplifier (PA) is increasing. In this paper, a 7–13 GHz 10 W high-efficiency MMIC PA is designed. This amplifier consists of a two-stage circuit structure with two high electron mobility transistor (HEMT) cells for the driver stage and four HEMT cells for the power stage. To ensure high efficiency and a certain output power (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>), both the driver–stage and power–stage transistors use a deep Class–AB bias. At the same time, in order to further improve the efficiency, low-loss and second–harmonic tuning techniques are used in the output and inter-stage matching networks, respectively. Finally, the electromagnetic simulation results show that within a frequency of 7–13 GHz, the amplifier achieves an average saturated continuous wave (CW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> of 40 dBm, a small signal gain of 14.5–15.5 dB, a power-added efficiency (PAE) of 30–46%, and the input and output return loss are better than 5 dB and 8 dB, respectively.
ISSN:2076-3417