Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase

Abstract Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATP...

Full description

Bibliographic Details
Main Authors: Saashia Fuji, Shota Yamauchi, Naoyuki Sugiyama, Takayuki Kohchi, Ryuichi Nishihama, Ken-ichiro Shimazaki, Atsushi Takemiya
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-45236-9
Description
Summary:Abstract Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.
ISSN:2041-1723