Temperature and Frequency Dependence of Magnetic Losses in Fe-Co

We investigate the temperature dependence of the energy loss <inline-formula> <tex-math notation="LaTeX">$W(f)$ </tex-math></inline-formula> of 0.10 and 0.20 mm thick Fe-Co-V sheets (Vacoflux &#x24C7; and Vacodur &#x24C7;) in the range &#x2212;50 &#x...

Full description

Bibliographic Details
Main Authors: Nicoleta Banu, Enzo Ferrara, Massimo Pasquale, Fausto Fiorillo, Olivier De La Barriere, Daniel Brunt, Adam Wilson, Stuart Harmon
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10274079/
Description
Summary:We investigate the temperature dependence of the energy loss <inline-formula> <tex-math notation="LaTeX">$W(f)$ </tex-math></inline-formula> of 0.10 and 0.20 mm thick Fe-Co-V sheets (Vacoflux &#x24C7; and Vacodur &#x24C7;) in the range &#x2212;50 &#x00B0;C <inline-formula> <tex-math notation="LaTeX">$\le T \le155 ^{\circ }\text{C}$ </tex-math></inline-formula>. The measurements, performed from DC to <inline-formula> <tex-math notation="LaTeX">${f}$ </tex-math></inline-formula> &#x003D; 5 kHz on ring samples and Epstein strips, show that <inline-formula> <tex-math notation="LaTeX">$W(f)$ </tex-math></inline-formula> passes through a minimum value around room temperature at all tested polarization values (<inline-formula> <tex-math notation="LaTeX">$1.0\le J_{\mathrm {p}} \le1.9$ </tex-math></inline-formula> T). The largest effect occurs under quasi-static regime and declines with frequency, depending on the sheet thickness and the ensuing role of the dynamic loss. The somewhat abnormal increase of the quasi-static loss <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {hyst}}$ </tex-math></inline-formula> with temperature, which contrasts with a concurrent decrease of the magnetocrystalline anisotropy constant, is interpreted in terms of temperature-dependent internal stresses and their change with <inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula>. The stresses are assumed to derive from the different thermal expansion coefficients of the ordered and disordered structural phases, a conclusion made plausible by the highly magnetostrictive properties of the material, dwelling in a low anisotropy environment. The AC properties are treated by adapting the loss decomposition to the inception and development of a non-uniform induction profile across the sheet thickness (skin effect) at high frequencies. The classical loss component is calculated via the numerical solution of the Maxwell&#x2019;s diffusion equation, where the magnetic constitutive equation of the material is identified with the normal magnetization curve. It turns out that the so-found <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {class}}(f)$ </tex-math></inline-formula> and the resulting excess loss <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {exc}}(f)$ </tex-math></inline-formula> are moderately dependent on temperature and <inline-formula> <tex-math notation="LaTeX">$W(f)$ </tex-math></inline-formula> eventually tends towards a slow monotonical decrease with <inline-formula> <tex-math notation="LaTeX">${T}$ </tex-math></inline-formula> at the highest frequencies.
ISSN:2169-3536