Robust Colon Tissue Cartography with Semi-Supervision
We explore the task of tissue classification for colon cancer histology in a low label regime comparing a semi-supervised and a supervised learning strategy in a series of experiments. Further, we investigate the model robustness w.r.t. distribution shifts in the unlabeled data and domain shifts acr...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2022-09-01
|
Series: | Current Directions in Biomedical Engineering |
Subjects: | |
Online Access: | https://doi.org/10.1515/cdbme-2022-1088 |
Summary: | We explore the task of tissue classification for colon cancer histology in a low label regime comparing a semi-supervised and a supervised learning strategy in a series of experiments. Further, we investigate the model robustness w.r.t. distribution shifts in the unlabeled data and domain shifts across different scanners to prove their practicality in a histology context. By utilizing unlabeled data in addition to nl = 1000 labeled tiles per class, we yield a substantial increase in accuracy from 89.9% to 91.4%. |
---|---|
ISSN: | 2364-5504 |