Robust Colon Tissue Cartography with Semi-Supervision

We explore the task of tissue classification for colon cancer histology in a low label regime comparing a semi-supervised and a supervised learning strategy in a series of experiments. Further, we investigate the model robustness w.r.t. distribution shifts in the unlabeled data and domain shifts acr...

Full description

Bibliographic Details
Main Authors: Dexl Jakob, Benz Michaela, Kuritcyn Petr, Wittenberg Thomas, Bruns Volker, Geppert Carol, Hartmann Arndt, Bischl Bernd, Goschenhofer Jann
Format: Article
Language:English
Published: De Gruyter 2022-09-01
Series:Current Directions in Biomedical Engineering
Subjects:
Online Access:https://doi.org/10.1515/cdbme-2022-1088
_version_ 1798013996026036224
author Dexl Jakob
Benz Michaela
Kuritcyn Petr
Wittenberg Thomas
Bruns Volker
Geppert Carol
Hartmann Arndt
Bischl Bernd
Goschenhofer Jann
author_facet Dexl Jakob
Benz Michaela
Kuritcyn Petr
Wittenberg Thomas
Bruns Volker
Geppert Carol
Hartmann Arndt
Bischl Bernd
Goschenhofer Jann
author_sort Dexl Jakob
collection DOAJ
description We explore the task of tissue classification for colon cancer histology in a low label regime comparing a semi-supervised and a supervised learning strategy in a series of experiments. Further, we investigate the model robustness w.r.t. distribution shifts in the unlabeled data and domain shifts across different scanners to prove their practicality in a histology context. By utilizing unlabeled data in addition to nl = 1000 labeled tiles per class, we yield a substantial increase in accuracy from 89.9% to 91.4%.
first_indexed 2024-04-11T15:11:36Z
format Article
id doaj.art-3a436ac07def4f1294c9db3081cb1688
institution Directory Open Access Journal
issn 2364-5504
language English
last_indexed 2024-04-11T15:11:36Z
publishDate 2022-09-01
publisher De Gruyter
record_format Article
series Current Directions in Biomedical Engineering
spelling doaj.art-3a436ac07def4f1294c9db3081cb16882022-12-22T04:16:38ZengDe GruyterCurrent Directions in Biomedical Engineering2364-55042022-09-018234434710.1515/cdbme-2022-1088Robust Colon Tissue Cartography with Semi-SupervisionDexl Jakob0Benz Michaela1Kuritcyn Petr2Wittenberg Thomas3Bruns Volker4Geppert Carol5Hartmann Arndt6Bischl Bernd7Goschenhofer Jann8Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33,Erlangen, GermanyFraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33,Erlangen, GermanyFraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33,Erlangen, GermanyFraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33,Erlangen, GermanyFraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33,Erlangen, GermanyInstitut fur Pathologie, Universitatsklinikum Erlangen; Friedrich-Alexander-Universitat (FAU),Erlangen-Nurnberg, GermanyInstitut fur Pathologie, Universitatsklinikum Erlangen; Friedrich-Alexander-Universitat (FAU),Erlangen-Nurnberg, GermanyDepartment of Statistics, Ludwig-Maximilians-Universitat,Munich, GermanyDepartment of Statistics, Ludwig-Maximilians-Universitat,Munich, GermanyWe explore the task of tissue classification for colon cancer histology in a low label regime comparing a semi-supervised and a supervised learning strategy in a series of experiments. Further, we investigate the model robustness w.r.t. distribution shifts in the unlabeled data and domain shifts across different scanners to prove their practicality in a histology context. By utilizing unlabeled data in addition to nl = 1000 labeled tiles per class, we yield a substantial increase in accuracy from 89.9% to 91.4%.https://doi.org/10.1515/cdbme-2022-1088computational pathologysemi-supervised learningcolon cancermodel robustness
spellingShingle Dexl Jakob
Benz Michaela
Kuritcyn Petr
Wittenberg Thomas
Bruns Volker
Geppert Carol
Hartmann Arndt
Bischl Bernd
Goschenhofer Jann
Robust Colon Tissue Cartography with Semi-Supervision
Current Directions in Biomedical Engineering
computational pathology
semi-supervised learning
colon cancer
model robustness
title Robust Colon Tissue Cartography with Semi-Supervision
title_full Robust Colon Tissue Cartography with Semi-Supervision
title_fullStr Robust Colon Tissue Cartography with Semi-Supervision
title_full_unstemmed Robust Colon Tissue Cartography with Semi-Supervision
title_short Robust Colon Tissue Cartography with Semi-Supervision
title_sort robust colon tissue cartography with semi supervision
topic computational pathology
semi-supervised learning
colon cancer
model robustness
url https://doi.org/10.1515/cdbme-2022-1088
work_keys_str_mv AT dexljakob robustcolontissuecartographywithsemisupervision
AT benzmichaela robustcolontissuecartographywithsemisupervision
AT kuritcynpetr robustcolontissuecartographywithsemisupervision
AT wittenbergthomas robustcolontissuecartographywithsemisupervision
AT brunsvolker robustcolontissuecartographywithsemisupervision
AT geppertcarol robustcolontissuecartographywithsemisupervision
AT hartmannarndt robustcolontissuecartographywithsemisupervision
AT bischlbernd robustcolontissuecartographywithsemisupervision
AT goschenhoferjann robustcolontissuecartographywithsemisupervision