Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane

In this paper we consider the decomposition of functions on the upper half-plane into orthogonal subspaces which are isometric to \(L^{2}(\mathbb{R})\) by continuous wavelet transforms. A necessary and sufficient condition for such a decomposition is given. From such a decomposition by general Lagu...

Full description

Bibliographic Details
Main Author: Ding-Xuan Zhou
Format: Article
Language:English
Published: Publishing House of the Romanian Academy 1992-02-01
Series:Journal of Numerical Analysis and Approximation Theory
Subjects:
Online Access:https://www.ictp.acad.ro/jnaat/journal/article/view/448
_version_ 1828542748201844736
author Ding-Xuan Zhou
author_facet Ding-Xuan Zhou
author_sort Ding-Xuan Zhou
collection DOAJ
description In this paper we consider the decomposition of functions on the upper half-plane into orthogonal subspaces which are isometric to \(L^{2}(\mathbb{R})\) by continuous wavelet transforms. A necessary and sufficient condition for such a decomposition is given. From such a decomposition by general Laguerre polynomials, we define a series of Toeplitz type operators and study the Schatten-Von Neumann classes of these operators.
first_indexed 2024-12-12T02:02:23Z
format Article
id doaj.art-3a4427dba26e4ef1bc003a417a752777
institution Directory Open Access Journal
issn 2457-6794
2501-059X
language English
last_indexed 2024-12-12T02:02:23Z
publishDate 1992-02-01
publisher Publishing House of the Romanian Academy
record_format Article
series Journal of Numerical Analysis and Approximation Theory
spelling doaj.art-3a4427dba26e4ef1bc003a417a7527772022-12-22T00:42:08ZengPublishing House of the Romanian AcademyJournal of Numerical Analysis and Approximation Theory2457-67942501-059X1992-02-01211Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-planeDing-Xuan Zhou0Zhejiang University, China In this paper we consider the decomposition of functions on the upper half-plane into orthogonal subspaces which are isometric to \(L^{2}(\mathbb{R})\) by continuous wavelet transforms. A necessary and sufficient condition for such a decomposition is given. From such a decomposition by general Laguerre polynomials, we define a series of Toeplitz type operators and study the Schatten-Von Neumann classes of these operators. https://www.ictp.acad.ro/jnaat/journal/article/view/448continuous wavelet transformfunction spacesToeplitz type operatorsSchatten-Von Neumann classBesov spaces
spellingShingle Ding-Xuan Zhou
Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
Journal of Numerical Analysis and Approximation Theory
continuous wavelet transform
function spaces
Toeplitz type operators
Schatten-Von Neumann class
Besov spaces
title Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
title_full Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
title_fullStr Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
title_full_unstemmed Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
title_short Wavelet transform, Toeplitz type operators and decomposition of functions on the upper half-plane
title_sort wavelet transform toeplitz type operators and decomposition of functions on the upper half plane
topic continuous wavelet transform
function spaces
Toeplitz type operators
Schatten-Von Neumann class
Besov spaces
url https://www.ictp.acad.ro/jnaat/journal/article/view/448
work_keys_str_mv AT dingxuanzhou wavelettransformtoeplitztypeoperatorsanddecompositionoffunctionsontheupperhalfplane