Nanomechanical in situ monitoring of proteolysis of peptide by Cathepsin B.

Characterization and control of proteolysis of peptides by specific cellular protease is a priori requisite for effective drug discovery. Here, we report the nanomechanical, in situ monitoring of proteolysis of peptide chain attributed to protease (Cathepsin B) by using a resonant nanomechanical mic...

Full description

Bibliographic Details
Main Authors: Taeyun Kwon, Jinsung Park, Jaemoon Yang, Dae Sung Yoon, Sungsoo Na, Chang-Wan Kim, Jin-Suck Suh, Yong-Min Huh, Seungjoo Haam, Kilho Eom
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2009-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2707113?pdf=render
Description
Summary:Characterization and control of proteolysis of peptides by specific cellular protease is a priori requisite for effective drug discovery. Here, we report the nanomechanical, in situ monitoring of proteolysis of peptide chain attributed to protease (Cathepsin B) by using a resonant nanomechanical microcantilever immersed in a liquid. Specifically, the detection is based on measurement of resonant frequency shift arising from proteolysis of peptides (leading to decrease of cantilever's overall mass, and consequently, increases in the resonance). It is shown that resonant microcantilever enables the quantification of proteolysis efficacy with respect to protease concentration. Remarkably, the nanomechanical, in situ monitoring of proteolysis allows us to gain insight into the kinetics of proteolysis of peptides, which is well depicted by Langmuir kinetic model. This implies that nanomechanical biosensor enables the characterization of specific cellular protease such as its kinetics.
ISSN:1932-6203