Distance Metric Optimization-Driven Neural Network Learning Framework for Pattern Classification

As a novel neural network learning framework, Twin Extreme Learning Machine (TELM) has received extensive attention and research in the field of machine learning. However, TELM is affected by noise or outliers in practical applications so that its generalization performance is reduced compared to ro...

Full description

Bibliographic Details
Main Authors: Yimeng Jiang, Guolin Yu, Jun Ma
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/765
Description
Summary:As a novel neural network learning framework, Twin Extreme Learning Machine (TELM) has received extensive attention and research in the field of machine learning. However, TELM is affected by noise or outliers in practical applications so that its generalization performance is reduced compared to robust learning algorithms. In this paper, we propose two novel distance metric optimization-driven robust twin extreme learning machine learning frameworks for pattern classification, namely, CWTELM and FCWTELM. By introducing the robust Welsch loss function and capped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula>-distance metric, our methods reduce the effect of outliers and improve the generalization performance of the model compared to TELM. In addition, two efficient iterative algorithms are designed to solve the challenges brought by the non-convex optimization problems CWTELM and FCWTELM, and we theoretically guarantee their convergence, local optimality, and computational complexity. Then, the proposed algorithms are compared with five other classical algorithms under different noise and different datasets, and the statistical detection analysis is implemented. Finally, we conclude that our algorithm has excellent robustness and classification performance.
ISSN:2075-1680