Derivations with values in noncommutative symmetric spaces

Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every deriva...

Full description

Bibliographic Details
Main Authors: Huang, Jinghao, Sukochev, Fedor
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.508/
Description
Summary:Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta :\mathcal{A}\rightarrow E(\mathcal{M},\tau )$ is necessarily inner for each $C^*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property.
ISSN:1778-3569