Derivations with values in noncommutative symmetric spaces

Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every deriva...

Full description

Bibliographic Details
Main Authors: Huang, Jinghao, Sukochev, Fedor
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.508/
_version_ 1797638562698493952
author Huang, Jinghao
Sukochev, Fedor
author_facet Huang, Jinghao
Sukochev, Fedor
author_sort Huang, Jinghao
collection DOAJ
description Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta :\mathcal{A}\rightarrow E(\mathcal{M},\tau )$ is necessarily inner for each $C^*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property.
first_indexed 2024-03-11T13:05:22Z
format Article
id doaj.art-3a5319cd334f44aebd2e3002e995a36e
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T13:05:22Z
publishDate 2023-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-3a5319cd334f44aebd2e3002e995a36e2023-11-03T14:36:25ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G81357136510.5802/crmath.50810.5802/crmath.508Derivations with values in noncommutative symmetric spacesHuang, Jinghao0Sukochev, Fedor1Institute for Advanced Study in Mathematics of HIT, Harbin Institute of Technology, Harbin, 150001, ChinaSchool of Mathematics and Statistics, University of New South Wales, Kensington, 2052, AustraliaLet $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta :\mathcal{A}\rightarrow E(\mathcal{M},\tau )$ is necessarily inner for each $C^*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.508/derivationnoncommutative symmetric spacesemifinite von Neumann algebra
spellingShingle Huang, Jinghao
Sukochev, Fedor
Derivations with values in noncommutative symmetric spaces
Comptes Rendus. Mathématique
derivation
noncommutative symmetric space
semifinite von Neumann algebra
title Derivations with values in noncommutative symmetric spaces
title_full Derivations with values in noncommutative symmetric spaces
title_fullStr Derivations with values in noncommutative symmetric spaces
title_full_unstemmed Derivations with values in noncommutative symmetric spaces
title_short Derivations with values in noncommutative symmetric spaces
title_sort derivations with values in noncommutative symmetric spaces
topic derivation
noncommutative symmetric space
semifinite von Neumann algebra
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.508/
work_keys_str_mv AT huangjinghao derivationswithvaluesinnoncommutativesymmetricspaces
AT sukochevfedor derivationswithvaluesinnoncommutativesymmetricspaces