Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures

There is growing interest in using passive microwave observations and vegetation optical depth (VOD) to study the above-ground biomass (AGB) and carbon stocks evolution. <italic>L</italic>-band observations, in particular, have been shown to be very sensitive to AGB. Here, thanks to the...

Full description

Bibliographic Details
Main Authors: Julio Cesar Salazar-Neira, Arnaud Mialon, Philippe Richaume, Stephane Mermoz, Yann H. Kerr, Alexandre Bouvet, Thuy Le Toan, Simon Boitard, Nemesio J. Rodriguez-Fernandez
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10149509/
_version_ 1797356390591758336
author Julio Cesar Salazar-Neira
Arnaud Mialon
Philippe Richaume
Stephane Mermoz
Yann H. Kerr
Alexandre Bouvet
Thuy Le Toan
Simon Boitard
Nemesio J. Rodriguez-Fernandez
author_facet Julio Cesar Salazar-Neira
Arnaud Mialon
Philippe Richaume
Stephane Mermoz
Yann H. Kerr
Alexandre Bouvet
Thuy Le Toan
Simon Boitard
Nemesio J. Rodriguez-Fernandez
author_sort Julio Cesar Salazar-Neira
collection DOAJ
description There is growing interest in using passive microwave observations and vegetation optical depth (VOD) to study the above-ground biomass (AGB) and carbon stocks evolution. <italic>L</italic>-band observations, in particular, have been shown to be very sensitive to AGB. Here, thanks to the multiangle capabilities of the soil moisture and ocean salinity mission, a new approach to estimate AGB directly from multiangular <italic>L</italic>-band brightness temperatures (TBs) is proposed, thus surpassing the use of intermediate variables such as VOD. The European Space Agency (ESA) Climate Change Initiative (CCI) Biomass maps for the years 2010, 2017, and 2018 are used as the AGB reference. AGB estimates from artificial neural networks (ANN) using a purely data-driven approach explained up to 88&#x0025; of AGB variability globally; even so, a decrease in retrieval performance was observed when models are applied to data from years different than the year used for their training. A new training methodology based on multiyear training sets is presented, leading to results showing more stability for temporal analyses. The best set of predictors and an optimal learning dataset configuration are proposed based on an assessment of the accuracy of the estimates. The ANN methodology using TBs is a promising alternative with respect to the common method of using a parametric function to estimate AGB from VOD. ANNs AGB estimates showed a higher correlation with CCI AGB maps (<inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula><sup>2</sup> <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>0.87 instead of <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>0.84) and presented a stronger agreement with their spatial structure and less differences in residual maps.
first_indexed 2024-03-08T14:26:57Z
format Article
id doaj.art-3a54fcdfe11548ee8d5839fb3a9aef71
institution Directory Open Access Journal
issn 2151-1535
language English
last_indexed 2024-03-08T14:26:57Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj.art-3a54fcdfe11548ee8d5839fb3a9aef712024-01-13T00:00:37ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352023-01-01165813582710.1109/JSTARS.2023.328528810149509Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness TemperaturesJulio Cesar Salazar-Neira0https://orcid.org/0000-0002-6662-5367Arnaud Mialon1https://orcid.org/0000-0001-7970-0701Philippe Richaume2https://orcid.org/0000-0002-2945-0262Stephane Mermoz3https://orcid.org/0000-0002-3166-7583Yann H. Kerr4https://orcid.org/0000-0001-6352-1717Alexandre Bouvet5https://orcid.org/0000-0002-7428-4339Thuy Le Toan6https://orcid.org/0000-0003-4843-5962Simon Boitard7https://orcid.org/0009-0001-3751-0202Nemesio J. Rodriguez-Fernandez8https://orcid.org/0000-0003-3796-149XCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceGlobEO-Global Earth Observation, Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceCESBIO, Toulouse, FranceCESBIO (Universit&#x00E9; de Toulouse, CNES, CNRS, IRD, INRAE), Toulouse, FranceThere is growing interest in using passive microwave observations and vegetation optical depth (VOD) to study the above-ground biomass (AGB) and carbon stocks evolution. <italic>L</italic>-band observations, in particular, have been shown to be very sensitive to AGB. Here, thanks to the multiangle capabilities of the soil moisture and ocean salinity mission, a new approach to estimate AGB directly from multiangular <italic>L</italic>-band brightness temperatures (TBs) is proposed, thus surpassing the use of intermediate variables such as VOD. The European Space Agency (ESA) Climate Change Initiative (CCI) Biomass maps for the years 2010, 2017, and 2018 are used as the AGB reference. AGB estimates from artificial neural networks (ANN) using a purely data-driven approach explained up to 88&#x0025; of AGB variability globally; even so, a decrease in retrieval performance was observed when models are applied to data from years different than the year used for their training. A new training methodology based on multiyear training sets is presented, leading to results showing more stability for temporal analyses. The best set of predictors and an optimal learning dataset configuration are proposed based on an assessment of the accuracy of the estimates. The ANN methodology using TBs is a promising alternative with respect to the common method of using a parametric function to estimate AGB from VOD. ANNs AGB estimates showed a higher correlation with CCI AGB maps (<inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula><sup>2</sup> <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>0.87 instead of <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>0.84) and presented a stronger agreement with their spatial structure and less differences in residual maps.https://ieeexplore.ieee.org/document/10149509/Above-ground biomass (AGB)forest biomass<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">$L$</tex-math> </inline-formula> </named-content>-bandmachine learningneural networkspassive microwaves (PMWs)
spellingShingle Julio Cesar Salazar-Neira
Arnaud Mialon
Philippe Richaume
Stephane Mermoz
Yann H. Kerr
Alexandre Bouvet
Thuy Le Toan
Simon Boitard
Nemesio J. Rodriguez-Fernandez
Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Above-ground biomass (AGB)
forest biomass
<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">$L$</tex-math> </inline-formula> </named-content>-band
machine learning
neural networks
passive microwaves (PMWs)
title Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
title_full Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
title_fullStr Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
title_full_unstemmed Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
title_short Above-Ground Biomass Estimation Based on Multi-Angular <italic>L</italic>-Band Measurements of Brightness Temperatures
title_sort above ground biomass estimation based on multi angular italic l italic band measurements of brightness temperatures
topic Above-ground biomass (AGB)
forest biomass
<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">$L$</tex-math> </inline-formula> </named-content>-band
machine learning
neural networks
passive microwaves (PMWs)
url https://ieeexplore.ieee.org/document/10149509/
work_keys_str_mv AT juliocesarsalazarneira abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT arnaudmialon abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT philipperichaume abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT stephanemermoz abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT yannhkerr abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT alexandrebouvet abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT thuyletoan abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT simonboitard abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures
AT nemesiojrodriguezfernandez abovegroundbiomassestimationbasedonmultiangularitaliclitalicbandmeasurementsofbrightnesstemperatures