Profinite invariants of arithmetic groups

We prove that the sign of the Euler characteristic of arithmetic groups with the congruence subgroup property is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic...

Full description

Bibliographic Details
Main Authors: Holger Kammeyer, Steffen Kionke, Jean Raimbault, Roman Sauer
Format: Article
Language:English
Published: Cambridge University Press 2020-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000432/type/journal_article
_version_ 1827994825313484800
author Holger Kammeyer
Steffen Kionke
Jean Raimbault
Roman Sauer
author_facet Holger Kammeyer
Steffen Kionke
Jean Raimbault
Roman Sauer
author_sort Holger Kammeyer
collection DOAJ
description We prove that the sign of the Euler characteristic of arithmetic groups with the congruence subgroup property is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F. Our methods imply similar results for $\ell^2$ -torsion as well as a strong profiniteness statement for Novikov–Shubin invariants.
first_indexed 2024-04-10T04:47:00Z
format Article
id doaj.art-3a5dda75c23e453d94d1b996c073a41e
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:00Z
publishDate 2020-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-3a5dda75c23e453d94d1b996c073a41e2023-03-09T12:34:47ZengCambridge University PressForum of Mathematics, Sigma2050-50942020-01-01810.1017/fms.2020.43Profinite invariants of arithmetic groupsHolger Kammeyer0https://orcid.org/0000-0002-6567-3762Steffen Kionke1https://orcid.org/0000-0002-6447-8527Jean Raimbault2https://orcid.org/0000-0002-1945-2678Roman Sauer3https://orcid.org/0000-0002-2907-6645Institute for Algebra and Geometry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; E-mail: ,Faculty of Mathematics and Computer Science, FernUniversität in Hagen, 58097 Hagen, Germany; E-mail:Institut de Mathématiques de Toulouse; UMR5219 Université de Toulouse; CNRS UPS IMT, F-31062 Toulouse Cedex 9, France; E-mail:Institute for Algebra and Geometry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; E-mail: ,We prove that the sign of the Euler characteristic of arithmetic groups with the congruence subgroup property is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F. Our methods imply similar results for $\ell^2$ -torsion as well as a strong profiniteness statement for Novikov–Shubin invariants. https://www.cambridge.org/core/product/identifier/S2050509420000432/type/journal_articleprofinite rigidityarithmetic groupsl2-invariants20E1811F75
spellingShingle Holger Kammeyer
Steffen Kionke
Jean Raimbault
Roman Sauer
Profinite invariants of arithmetic groups
Forum of Mathematics, Sigma
profinite rigidity
arithmetic groups
l2-invariants
20E18
11F75
title Profinite invariants of arithmetic groups
title_full Profinite invariants of arithmetic groups
title_fullStr Profinite invariants of arithmetic groups
title_full_unstemmed Profinite invariants of arithmetic groups
title_short Profinite invariants of arithmetic groups
title_sort profinite invariants of arithmetic groups
topic profinite rigidity
arithmetic groups
l2-invariants
20E18
11F75
url https://www.cambridge.org/core/product/identifier/S2050509420000432/type/journal_article
work_keys_str_mv AT holgerkammeyer profiniteinvariantsofarithmeticgroups
AT steffenkionke profiniteinvariantsofarithmeticgroups
AT jeanraimbault profiniteinvariantsofarithmeticgroups
AT romansauer profiniteinvariantsofarithmeticgroups