Comparison of serum and saliva miRNAs for identification and characterization of mTBI in adult mixed martial arts fighters.

Traumatic brain injury (TBI) is a major cause of death and disability worldwide, with mild TBI (mTBI) accounting for 85% of cases. mTBI is also implicated in serious long-term sequelae including second impact syndrome and chronic traumatic encephalopathy. mTBI often goes undiagnosed due to delayed s...

Full description

Bibliographic Details
Main Authors: Daria LaRocca, Sarah Barns, Steven D Hicks, Andrew Brindle, Jeremy Williams, Richard Uhlig, Paul Johnson, Christopher Neville, Frank A Middleton
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0207785
Description
Summary:Traumatic brain injury (TBI) is a major cause of death and disability worldwide, with mild TBI (mTBI) accounting for 85% of cases. mTBI is also implicated in serious long-term sequelae including second impact syndrome and chronic traumatic encephalopathy. mTBI often goes undiagnosed due to delayed symptom onset and limited sensitivity of conventional assessment measures compared with severe TBI. Current efforts seek to identify accurate and reliable non-invasive biomarkers associated with functional measures relevant to long-term outcomes. Here we evaluated the utility of serum and salivary microRNAs (miRNAs) to serve as sensitive and specific peripheral biomarkers of possible mTBI. Our primary objectives were to establish the relationship between peripheral measures of miRNA, objective quantification of head impacts, and sensitive indices of balance and cognitive function in healthy young adult athletes. A secondary objective was to compare the sensitivity of miRNA versus commonly used blood-based protein biomarkers. 50 amateur mixed martial arts (MMA) fighters participated. 216 saliva and serum samples were collected at multiple time points, both pre- and post-fight. Levels of 10 serum proteins were compared in a subset of the fighters (n = 24). Levels of miRNAs were obtained by next generation sequencing. Functional outcomes were evaluated using a computerized assessment system that measured cognitive performance, body sway, and combined cognitive performance and body sway during dual task completion. Data were analyzed using multivariate logistic regression for predictive classification, analysis of variance, correlation analysis and principal component analysis. We identified a subset of salivary and serum miRNAs that showed robust utility at predicting TBI likelihood and demonstrated quantitative associations with head impacts as well as cognitive and balance measures. In contrast, serum proteins demonstrated far less utility. We also found that the timing of the responses varies in saliva and serum, which is a critical observation for biomarker studies to consider.
ISSN:1932-6203