Direct displacement-based design of special composite RC shear walls with steel boundary elements
Special composite RC shear wall (CRCSW) with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Iranian Society of Structrual Engineering (ISSE)
2016-06-01
|
Series: | Journal of Structural and Construction Engineering |
Subjects: | |
Online Access: | https://www.jsce.ir/article_38590_d6f4fe91baffea2c1de166d1fc84bf21.pdf |
_version_ | 1818897397178171392 |
---|---|
author | H. Kazemi A. Mohebkhah |
author_facet | H. Kazemi A. Mohebkhah |
author_sort | H. Kazemi |
collection | DOAJ |
description | Special composite RC shear wall (CRCSW) with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD) of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu) by the base shear demand (Vd) as per the Direct Displacement Based-Design (DDBD) method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior. |
first_indexed | 2024-12-19T19:15:31Z |
format | Article |
id | doaj.art-3a71153f49254693b2e6763b145669d7 |
institution | Directory Open Access Journal |
issn | 2476-3977 2538-2616 |
language | fas |
last_indexed | 2024-12-19T19:15:31Z |
publishDate | 2016-06-01 |
publisher | Iranian Society of Structrual Engineering (ISSE) |
record_format | Article |
series | Journal of Structural and Construction Engineering |
spelling | doaj.art-3a71153f49254693b2e6763b145669d72022-12-21T20:09:08ZfasIranian Society of Structrual Engineering (ISSE)Journal of Structural and Construction Engineering2476-39772538-26162016-06-01319911138590Direct displacement-based design of special composite RC shear walls with steel boundary elementsH. Kazemi0A. Mohebkhah1MSc of Structural Engineering, Faculty of Civil and Architectural Engineering, Malayer University, Malayer, IranAssistant professor, Structural Engineering Department, Faculty of Civil and Architectural Engineering, Malayer University, Malayer, IranSpecial composite RC shear wall (CRCSW) with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD) of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu) by the base shear demand (Vd) as per the Direct Displacement Based-Design (DDBD) method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.https://www.jsce.ir/article_38590_d6f4fe91baffea2c1de166d1fc84bf21.pdfdirect displacement-based designsteel boundary columnreinforced concrete wallseismic behaviournonlinear dynamic analysis |
spellingShingle | H. Kazemi A. Mohebkhah Direct displacement-based design of special composite RC shear walls with steel boundary elements Journal of Structural and Construction Engineering direct displacement-based design steel boundary column reinforced concrete wall seismic behaviour nonlinear dynamic analysis |
title | Direct displacement-based design of special composite RC shear walls with steel boundary elements |
title_full | Direct displacement-based design of special composite RC shear walls with steel boundary elements |
title_fullStr | Direct displacement-based design of special composite RC shear walls with steel boundary elements |
title_full_unstemmed | Direct displacement-based design of special composite RC shear walls with steel boundary elements |
title_short | Direct displacement-based design of special composite RC shear walls with steel boundary elements |
title_sort | direct displacement based design of special composite rc shear walls with steel boundary elements |
topic | direct displacement-based design steel boundary column reinforced concrete wall seismic behaviour nonlinear dynamic analysis |
url | https://www.jsce.ir/article_38590_d6f4fe91baffea2c1de166d1fc84bf21.pdf |
work_keys_str_mv | AT hkazemi directdisplacementbaseddesignofspecialcompositercshearwallswithsteelboundaryelements AT amohebkhah directdisplacementbaseddesignofspecialcompositercshearwallswithsteelboundaryelements |