Deep anomaly detection through visual attention in surveillance videos
Abstract This paper describes a method for learning anomaly behavior in the video by finding an attention region from spatiotemporal information, in contrast to the full-frame learning. In our proposed method, a robust background subtraction (BG) for extracting motion, indicating the location of att...
Glavni autori: | , , , |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
SpringerOpen
2020-10-01
|
Serija: | Journal of Big Data |
Teme: | |
Online pristup: | http://link.springer.com/article/10.1186/s40537-020-00365-y |