New Model for Stacking Monomers in Filamentous Actin from Skeletal Muscles of <i>Oryctolagus cuniculus</i>

To date, some scientific evidence (limited proteolysis, mass spectrometry analysis, electron microscopy (EM)) has accumulated, which indicates that the generally accepted model of double-stranded of filamentous actin (F-actin) organization in eukaryotic cells is not the only one. This entails an amb...

Full description

Bibliographic Details
Main Authors: Anna V. Glyakina, Alexey K. Surin, Sergei Yu. Grishin, Olga M. Selivanova, Mariya Yu. Suvorina, Liya G. Bobyleva, Ivan M. Vikhlyantsev, Oxana V. Galzitskaya
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/21/8319
Description
Summary:To date, some scientific evidence (limited proteolysis, mass spectrometry analysis, electron microscopy (EM)) has accumulated, which indicates that the generally accepted model of double-stranded of filamentous actin (F-actin) organization in eukaryotic cells is not the only one. This entails an ambiguous understanding of many of the key cellular processes in which F-actin is involved. For a detailed understanding of the mechanism of F-actin assembly and actin interaction with its partners, it is necessary to take into account the polymorphism of the structural organization of F-actin at the molecular level. Using electron microscopy, limited proteolysis, mass spectrometry, X-ray diffraction, and structural modeling we demonstrated that F-actin presented in the EM images has no double-stranded organization, the regions of protease resistance are accessible for action of proteases in F-actin models. Based on all data, a new spatial model of filamentous actin is proposed, and the F-actin polymorphism is discussed.
ISSN:1661-6596
1422-0067