Resumo: | We continue the study of a non-self-adjoint fractional three-term Sturm–Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left Riemann–Liouville fractional integral under <i>Dirichlet type</i> boundary conditions. We study the existence and asymptotic behavior of the real eigenvalues and show that for certain values of the fractional differentiation parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, there is a finite set of real eigenvalues and that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>, there may be none at all. As <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> we show that their number becomes infinite and that the problem then approaches a standard Dirichlet Sturm–Liouville problem with the composition of the operators becoming the operator of second order differentiation.
|