Fractional Sturm–Liouville Eigenvalue Problems, II

We continue the study of a non-self-adjoint fractional three-term Sturm–Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left Riemann–Liouville fractional integral under <i>Dirichlet type</i> boundary conditions. We study the existen...

Full description

Bibliographic Details
Main Authors: Mohammad Dehghan, Angelo B. Mingarelli
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/9/487
_version_ 1827660840602435584
author Mohammad Dehghan
Angelo B. Mingarelli
author_facet Mohammad Dehghan
Angelo B. Mingarelli
author_sort Mohammad Dehghan
collection DOAJ
description We continue the study of a non-self-adjoint fractional three-term Sturm–Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left Riemann–Liouville fractional integral under <i>Dirichlet type</i> boundary conditions. We study the existence and asymptotic behavior of the real eigenvalues and show that for certain values of the fractional differentiation parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, there is a finite set of real eigenvalues and that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>, there may be none at all. As <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> we show that their number becomes infinite and that the problem then approaches a standard Dirichlet Sturm–Liouville problem with the composition of the operators becoming the operator of second order differentiation.
first_indexed 2024-03-09T23:59:09Z
format Article
id doaj.art-3a7eedf2b7f24c7db370fa9ec724f1b6
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T23:59:09Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-3a7eedf2b7f24c7db370fa9ec724f1b62023-11-23T16:19:28ZengMDPI AGFractal and Fractional2504-31102022-08-016948710.3390/fractalfract6090487Fractional Sturm–Liouville Eigenvalue Problems, IIMohammad Dehghan0Angelo B. Mingarelli1School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, CanadaSchool of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, CanadaWe continue the study of a non-self-adjoint fractional three-term Sturm–Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left Riemann–Liouville fractional integral under <i>Dirichlet type</i> boundary conditions. We study the existence and asymptotic behavior of the real eigenvalues and show that for certain values of the fractional differentiation parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, there is a finite set of real eigenvalues and that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>, there may be none at all. As <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>→</mo><msup><mn>1</mn><mo>−</mo></msup></mrow></semantics></math></inline-formula> we show that their number becomes infinite and that the problem then approaches a standard Dirichlet Sturm–Liouville problem with the composition of the operators becoming the operator of second order differentiation.https://www.mdpi.com/2504-3110/6/9/487Fractional Sturm–Liouvillefractional calculusLaplace transformMittag-Leffler functioneigenvaluesasymptotics
spellingShingle Mohammad Dehghan
Angelo B. Mingarelli
Fractional Sturm–Liouville Eigenvalue Problems, II
Fractal and Fractional
Fractional Sturm–Liouville
fractional calculus
Laplace transform
Mittag-Leffler function
eigenvalues
asymptotics
title Fractional Sturm–Liouville Eigenvalue Problems, II
title_full Fractional Sturm–Liouville Eigenvalue Problems, II
title_fullStr Fractional Sturm–Liouville Eigenvalue Problems, II
title_full_unstemmed Fractional Sturm–Liouville Eigenvalue Problems, II
title_short Fractional Sturm–Liouville Eigenvalue Problems, II
title_sort fractional sturm liouville eigenvalue problems ii
topic Fractional Sturm–Liouville
fractional calculus
Laplace transform
Mittag-Leffler function
eigenvalues
asymptotics
url https://www.mdpi.com/2504-3110/6/9/487
work_keys_str_mv AT mohammaddehghan fractionalsturmliouvilleeigenvalueproblemsii
AT angelobmingarelli fractionalsturmliouvilleeigenvalueproblemsii