Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electro...

Full description

Bibliographic Details
Main Authors: Chi-Yuan Lee, Jing-Chih Ciou, Chun-Ching Hsiao, An-Shen Siao
Format: Article
Language:English
Published: MDPI AG 2011-11-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/11/11/10458/
Description
Summary:This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.
ISSN:1424-8220