ALIGNING POSITIONING AND NAVIGATION OF SMART MOBILE DEVICES TO AR/VR ENVIRONMENTS

Augmented Reality/Virtual Reality (AR/VR) technology offers novel and excited experiences to visitors of cultural sites. Extended recent technological advances in smart communication devices made the connection of the real to the virtual worlds more affordable and effective. In spite of the rapid de...

Full description

Bibliographic Details
Main Authors: D. Kaimaris, T. Roustanis, I. A. Karolos, K. Klimantakis, P. Patias
Format: Article
Language:English
Published: Copernicus Publications 2021-08-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-1-2021/347/2021/isprs-archives-XLVI-M-1-2021-347-2021.pdf
Description
Summary:Augmented Reality/Virtual Reality (AR/VR) technology offers novel and excited experiences to visitors of cultural sites. Extended recent technological advances in smart communication devices made the connection of the real to the virtual worlds more affordable and effective. In spite of the rapid development and availability of the AR/VR applications to cultural heritage, there still exist gaps and challenges in accurate positioning and navigation of visitors’ smart devices in both out-doors archaeological spaces as well as in in-doors museum spaces. Recent technology smart devices embody GNSS positioning sensors, which in best cases, provide 1-meter positioning accuracies in open spaces, while are unable to work in-doors. Such accuracies and restrictions lead to gaps in fetching visitor’s position in AR environments and mis-positions with regard to the rest AR/VR objects as visualized in smart screens, while the problem gets worse when dealing with real-time videoing, when elapse times and refresh rates lead to additional mispositionings. In this paper, effort is made to present and evaluate the most recent and widely used tools for positioning and navigation of smart devices in in- and out-doors CH sites.
ISSN:1682-1750
2194-9034