Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide

<p>The isotopic composition of nitrogen and oxygen in nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) potentially carries a wealth of information about the dynamics of the nitrogen oxides (NO<span class="inline-formula">&l...

Full description

Bibliographic Details
Main Authors: S. Albertin, J. Savarino, S. Bekki, A. Barbero, N. Caillon
Format: Article
Language:English
Published: Copernicus Publications 2021-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/10477/2021/acp-21-10477-2021.pdf
_version_ 1818886192019537920
author S. Albertin
S. Albertin
J. Savarino
S. Bekki
A. Barbero
N. Caillon
author_facet S. Albertin
S. Albertin
J. Savarino
S. Bekki
A. Barbero
N. Caillon
author_sort S. Albertin
collection DOAJ
description <p>The isotopic composition of nitrogen and oxygen in nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) potentially carries a wealth of information about the dynamics of the nitrogen oxides (NO<span class="inline-formula"><sub><i>x</i></sub></span> <span class="inline-formula">=</span> nitric oxide (NO) <span class="inline-formula">+</span> NO<span class="inline-formula"><sub>2</sub></span>) chemistry in the atmosphere. While nitrogen isotopes of NO<span class="inline-formula"><sub>2</sub></span> are subtle indicators of NO<span class="inline-formula"><sub><i>x</i></sub></span> emissions and chemistry, oxygen isotopes are believed to reflect only the O<span class="inline-formula"><sub>3</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6bfc4ae3491d603d986b6e1d0e6866cf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00001.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00001.png"/></svg:svg></span></span> NO<span class="inline-formula"><sub><i>x</i></sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="539a58614ea8688159b8effbc6d3da8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00002.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00002.png"/></svg:svg></span></span> VOC chemical regime in different atmospheric environments. In order to access this potential tracer of the tropospheric chemistry, we have developed an efficient active method to trap atmospheric NO<span class="inline-formula"><sub>2</sub></span> on denuder tubes and measured, for the first time, its multi-isotopic composition (<span class="inline-formula"><i>δ</i><sup>15</sup></span>N, <span class="inline-formula"><i>δ</i><sup>18</sup></span>O, and <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O). The <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O values of NO<span class="inline-formula"><sub>2</sub></span> trapped at our site in Grenoble, France, show a large diurnal cycle peaking in late morning at (39.2 <span class="inline-formula">±</span> 0.3) ‰ and decreasing at night until (20.5 <span class="inline-formula">±</span> 0.3) ‰. On top of this diurnal cycle, <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O also exhibits substantial daytime variability (from 29.7 ‰ to 39.2 ‰), certainly driven by changes in the O<span class="inline-formula"><sub>3</sub></span> to peroxyl radicals (RO<span class="inline-formula"><sub>2</sub></span>) ratio. The nighttime decay of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) appears to be driven by NO<span class="inline-formula"><sub>2</sub></span> slow removal, mostly from conversion into N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span>, and its formation from the reaction between O<span class="inline-formula"><sub>3</sub></span> and freshly emitted NO. As expected from a nighttime <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) expression, our <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) measured towards the end of the night is quantitatively consistent with typical values of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(O<span class="inline-formula"><sub>3</sub></span>). Daytime N isotope fractionation is estimated using a general expression linking it to <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>). An expression is also derived for the nighttime N isotope fractionation. In contrast to <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>), <span class="inline-formula"><i>δ</i><sup>15</sup></span>N(NO<span class="inline-formula"><sub>2</sub></span>) measurements exhibit little diurnal variability (<span class="inline-formula">−</span>11.8 ‰ to <span class="inline-formula">−</span>4.9 ‰) with negligible isotope fractionations between NO and NO<span class="inline-formula"><sub>2</sub></span>, mainly due to high NO<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M48" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c435aaf3008f447f555024ce6ff0eeff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00003.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00003.png"/></svg:svg></span></span> NO<span class="inline-formula"><sub><i>x</i></sub></span> ratios, excepted during the morning rush hours. The main NO<span class="inline-formula"><sub><i>x</i></sub></span> emission sources are estimated using a Bayesian isotope mixing model, indicating the predominance of traffic emissions in this area. These preliminary results are very promising for using the combination of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O and <span class="inline-formula"><i>δ</i><sup>15</sup></span>N of NO<span class="inline-formula"><sub>2</sub></span> as a probe of the NO<span class="inline-formula"><sub><i>x</i></sub></span> sources and fate and for interpreting nitrate isotopic composition records.</p>
first_indexed 2024-12-19T16:17:25Z
format Article
id doaj.art-3a9ae2d407654c20a7dbe3c69a557680
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-19T16:17:25Z
publishDate 2021-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-3a9ae2d407654c20a7dbe3c69a5576802022-12-21T20:14:35ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-07-0121104771049710.5194/acp-21-10477-2021Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxideS. Albertin0S. Albertin1J. Savarino2S. Bekki3A. Barbero4N. Caillon5LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, 75005 Paris, FranceIGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, FranceIGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, FranceLATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, 75005 Paris, FranceIGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, FranceIGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France<p>The isotopic composition of nitrogen and oxygen in nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) potentially carries a wealth of information about the dynamics of the nitrogen oxides (NO<span class="inline-formula"><sub><i>x</i></sub></span> <span class="inline-formula">=</span> nitric oxide (NO) <span class="inline-formula">+</span> NO<span class="inline-formula"><sub>2</sub></span>) chemistry in the atmosphere. While nitrogen isotopes of NO<span class="inline-formula"><sub>2</sub></span> are subtle indicators of NO<span class="inline-formula"><sub><i>x</i></sub></span> emissions and chemistry, oxygen isotopes are believed to reflect only the O<span class="inline-formula"><sub>3</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6bfc4ae3491d603d986b6e1d0e6866cf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00001.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00001.png"/></svg:svg></span></span> NO<span class="inline-formula"><sub><i>x</i></sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="539a58614ea8688159b8effbc6d3da8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00002.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00002.png"/></svg:svg></span></span> VOC chemical regime in different atmospheric environments. In order to access this potential tracer of the tropospheric chemistry, we have developed an efficient active method to trap atmospheric NO<span class="inline-formula"><sub>2</sub></span> on denuder tubes and measured, for the first time, its multi-isotopic composition (<span class="inline-formula"><i>δ</i><sup>15</sup></span>N, <span class="inline-formula"><i>δ</i><sup>18</sup></span>O, and <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O). The <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O values of NO<span class="inline-formula"><sub>2</sub></span> trapped at our site in Grenoble, France, show a large diurnal cycle peaking in late morning at (39.2 <span class="inline-formula">±</span> 0.3) ‰ and decreasing at night until (20.5 <span class="inline-formula">±</span> 0.3) ‰. On top of this diurnal cycle, <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O also exhibits substantial daytime variability (from 29.7 ‰ to 39.2 ‰), certainly driven by changes in the O<span class="inline-formula"><sub>3</sub></span> to peroxyl radicals (RO<span class="inline-formula"><sub>2</sub></span>) ratio. The nighttime decay of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) appears to be driven by NO<span class="inline-formula"><sub>2</sub></span> slow removal, mostly from conversion into N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span>, and its formation from the reaction between O<span class="inline-formula"><sub>3</sub></span> and freshly emitted NO. As expected from a nighttime <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) expression, our <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>) measured towards the end of the night is quantitatively consistent with typical values of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(O<span class="inline-formula"><sub>3</sub></span>). Daytime N isotope fractionation is estimated using a general expression linking it to <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>). An expression is also derived for the nighttime N isotope fractionation. In contrast to <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O(NO<span class="inline-formula"><sub>2</sub></span>), <span class="inline-formula"><i>δ</i><sup>15</sup></span>N(NO<span class="inline-formula"><sub>2</sub></span>) measurements exhibit little diurnal variability (<span class="inline-formula">−</span>11.8 ‰ to <span class="inline-formula">−</span>4.9 ‰) with negligible isotope fractionations between NO and NO<span class="inline-formula"><sub>2</sub></span>, mainly due to high NO<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M48" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c435aaf3008f447f555024ce6ff0eeff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10477-2021-ie00003.svg" width="8pt" height="14pt" src="acp-21-10477-2021-ie00003.png"/></svg:svg></span></span> NO<span class="inline-formula"><sub><i>x</i></sub></span> ratios, excepted during the morning rush hours. The main NO<span class="inline-formula"><sub><i>x</i></sub></span> emission sources are estimated using a Bayesian isotope mixing model, indicating the predominance of traffic emissions in this area. These preliminary results are very promising for using the combination of <span class="inline-formula"><i>Δ</i><sup>17</sup></span>O and <span class="inline-formula"><i>δ</i><sup>15</sup></span>N of NO<span class="inline-formula"><sub>2</sub></span> as a probe of the NO<span class="inline-formula"><sub><i>x</i></sub></span> sources and fate and for interpreting nitrate isotopic composition records.</p>https://acp.copernicus.org/articles/21/10477/2021/acp-21-10477-2021.pdf
spellingShingle S. Albertin
S. Albertin
J. Savarino
S. Bekki
A. Barbero
N. Caillon
Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
Atmospheric Chemistry and Physics
title Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
title_full Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
title_fullStr Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
title_full_unstemmed Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
title_short Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide
title_sort measurement report nitrogen isotopes i δ i sup 15 sup n and first quantification of oxygen isotope anomalies i δ i sup 17 sup o i δ i sup 18 sup o in atmospheric nitrogen dioxide
url https://acp.copernicus.org/articles/21/10477/2021/acp-21-10477-2021.pdf
work_keys_str_mv AT salbertin measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide
AT salbertin measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide
AT jsavarino measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide
AT sbekki measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide
AT abarbero measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide
AT ncaillon measurementreportnitrogenisotopesidisup15supnandfirstquantificationofoxygenisotopeanomaliesidisup17supoidisup18supoinatmosphericnitrogendioxide