Scotch tape induced strains for structural variation of FeTe0.5Se0.5 and Fe1.05Te single crystals

We have recently reported that the superconducting transition temperature of FeTe0.5Se0.5 flakes attached onto commercial Scotch tape can be enhanced by about 1-2 K due to a thermal-mismatch induced compressive strain. In this work, we further investigated the Scotch tape effect on structural variat...

Full description

Bibliographic Details
Main Authors: Weike Wang, Xuefei Wang, Lei Zhang, Jiyong Yang, Xuliang Chen, Zhitao Zhang, Mingliang Tian, Zhaorong Yang, Yuheng Zhang
Format: Article
Language:English
Published: AIP Publishing LLC 2016-02-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4942042
Description
Summary:We have recently reported that the superconducting transition temperature of FeTe0.5Se0.5 flakes attached onto commercial Scotch tape can be enhanced by about 1-2 K due to a thermal-mismatch induced compressive strain. In this work, we further investigated the Scotch tape effect on structural variation of FeTe0.5Se0.5 and Fe1.05Te flakes by X-ray diffraction measurements. We show that for FeTe0.5Se0.5, the lattice constant c of taped flakes is elongated by about 0.5% at 15 K as compared with bulk crystal. Upon warming from 15 K, the lattice constant c of the taped flakes first levels off then displays negative thermal expansion followed by monotonic increase at temperatures above 100 K. For antiferromagnetic Fe1.05Te, the structural transition around 70 K is remarkably broadened by about 2 K. The present results demonstrate that the Scotch tape is a simple and effective tool to probe structure sensitive physical properties of layered materials.
ISSN:2158-3226