Carbon Nanofibers Prepared from Solar Pyrolysis of Pinewood as Binder-free Electrodes for Flexible Supercapacitors

Summary: Solar pyrolysis of renewable biomass has huge potential for sustainable production of fuel or chemical feedstock for the activated carbon materials. Here, we report a method for producing high-quality carbon nanofiber (CNF) precursor and subsequently CNFs as a low-cost and eco-friendly ener...

Full description

Bibliographic Details
Main Authors: Tongtong Wang, Asif H. Rony, Kaidi Sun, Weibo Gong, Xin He, Wenyang Lu, Mingchen Tang, Runping Ye, Jiuling Yu, Lin Kang, Hongmei Luo, Steve J. Smith, Eric G. Eddings, Maohong Fan
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Cell Reports Physical Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666386420300746
Description
Summary:Summary: Solar pyrolysis of renewable biomass has huge potential for sustainable production of fuel or chemical feedstock for the activated carbon materials. Here, we report a method for producing high-quality carbon nanofiber (CNF) precursor and subsequently CNFs as a low-cost and eco-friendly energy storage material. Specifically, pinewood is pyrolyzed with solar energy to generate a phenol-rich bioliquid precursor that is found to be a strong candidate for synthesizing binder-free flexible electrode materials via electrospinning. The CNFs prepared with 30% solar-driven bioliquids and 70% polyacrylonitrile have a high specific surface area and rich microstructure, which are the key to its electrochemical performance in terms of specific capacitance (349 F g−1 at the current density of 0.5 A g−1) with notable rate performance, reversibility, and cycling stability in 6 M KOH aqueous electrolyte. Thus, solar bioliquids are feasible CNF precursors, and such derived CNFs have potential to be applied in energy storage devices.
ISSN:2666-3864