Fusion of Lightweight Networks and DeepSort for Fatigue Driving Detection Tracking Algorithm
The fatigue driving detection process faces issues such as a large number of parameters, low accuracy and insufficient continuous detection. To address these, this paper proposes a method combining enhanced YOLOv5s and DeepSort for fatigue driving detection. First, the improved Mobilenet_...
Główni autorzy: | Kai Xu, Fu Li, Deji Chen, Linlong Zhu, Quan Wang |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
IEEE
2024-01-01
|
Seria: | IEEE Access |
Hasła przedmiotowe: | |
Dostęp online: | https://ieeexplore.ieee.org/document/10496102/ |
Podobne zapisy
-
Enhanced DeepSORT and StrongSORT for Multicattle Tracking With Optimized Detection and Re-Identification
od: Hyeon-Seok Sim, i wsp.
Wydane: (2025-01-01) -
Smart Logistics Warehouse Moving-Object Tracking Based on YOLOv5 and DeepSORT
od: Tingbo Xie, i wsp.
Wydane: (2023-09-01) -
On the Study of Joint YOLOv5-DeepSort Detection and Tracking Algorithm for <i>Rhynchophorus ferrugineus</i>
od: Shuai Wu, i wsp.
Wydane: (2025-02-01) -
Vehicle Multi-Object Detection and Tracking Algorithm Based on Improved You Only Look Once 5s Version and DeepSORT
od: Thioanh Bui, i wsp.
Wydane: (2024-03-01) -
Solving traffic data occlusion problems in computer vision algorithms using DeepSORT and quantum computing
od: Frank Ngeni, i wsp.
Wydane: (2024-02-01)