Fusion of Lightweight Networks and DeepSort for Fatigue Driving Detection Tracking Algorithm
The fatigue driving detection process faces issues such as a large number of parameters, low accuracy and insufficient continuous detection. To address these, this paper proposes a method combining enhanced YOLOv5s and DeepSort for fatigue driving detection. First, the improved Mobilenet_...
Главные авторы: | Kai Xu, Fu Li, Deji Chen, Linlong Zhu, Quan Wang |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
IEEE
2024-01-01
|
Серии: | IEEE Access |
Предметы: | |
Online-ссылка: | https://ieeexplore.ieee.org/document/10496102/ |
Схожие документы
-
Enhanced DeepSORT and StrongSORT for Multicattle Tracking With Optimized Detection and Re-Identification
по: Hyeon-Seok Sim, и др.
Опубликовано: (2025-01-01) -
Smart Logistics Warehouse Moving-Object Tracking Based on YOLOv5 and DeepSORT
по: Tingbo Xie, и др.
Опубликовано: (2023-09-01) -
On the Study of Joint YOLOv5-DeepSort Detection and Tracking Algorithm for <i>Rhynchophorus ferrugineus</i>
по: Shuai Wu, и др.
Опубликовано: (2025-02-01) -
Vehicle Multi-Object Detection and Tracking Algorithm Based on Improved You Only Look Once 5s Version and DeepSORT
по: Thioanh Bui, и др.
Опубликовано: (2024-03-01) -
Solving traffic data occlusion problems in computer vision algorithms using DeepSORT and quantum computing
по: Frank Ngeni, и др.
Опубликовано: (2024-02-01)