Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model

<p>We explore the sensitivity of modeled tropospheric hydroxyl (OH) concentration trends to meteorology and near-term climate forcers (NTCFs), namely methane (CH<span class="inline-formula"><sub>4</sub></span>) nitrogen oxides <span class="inline-form...

Full description

Bibliographic Details
Main Authors: G. Chua, V. Naik, L. W. Horowitz
Format: Article
Language:English
Published: Copernicus Publications 2023-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/4955/2023/acp-23-4955-2023.pdf
_version_ 1797837558127788032
author G. Chua
G. Chua
V. Naik
L. W. Horowitz
author_facet G. Chua
G. Chua
V. Naik
L. W. Horowitz
author_sort G. Chua
collection DOAJ
description <p>We explore the sensitivity of modeled tropospheric hydroxyl (OH) concentration trends to meteorology and near-term climate forcers (NTCFs), namely methane (CH<span class="inline-formula"><sub>4</sub></span>) nitrogen oxides <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>+</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1740a284ba68bb05139a5d17b881f526"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-4955-2023-ie00001.svg" width="93pt" height="13pt" src="acp-23-4955-2023-ie00001.png"/></svg:svg></span></span> carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs) and ozone-depleting substances (ODSs), using the Geophysical Fluid Dynamics Laboratory (GFDL)'s atmospheric chemistry–climate model, the Atmospheric Model version 4.1 (AM4.1), driven by emissions inventories developed for the Sixth Coupled Model Intercomparison Project (CMIP6) and forced by observed sea surface temperatures and sea ice prepared in support of the CMIP6 Atmospheric Model Intercomparison Project (AMIP) simulations. We find that the modeled tropospheric air-mass-weighted mean [OH] has increased by <span class="inline-formula">∼5</span> % globally from 1980 to 2014. We find that <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions and CH<span class="inline-formula"><sub>4</sub></span> concentrations dominate the modeled global trend, while CO emissions and meteorology were also important in driving regional trends. Modeled tropospheric NO<span class="inline-formula"><sub>2</sub></span> column trends are largely consistent with those retrieved from the Ozone Monitoring Instrument (OMI) satellite, but simulated CO column trends generally overestimate those retrieved from the Measurements of Pollution in The Troposphere (MOPITT) satellite, possibly reflecting biases in input anthropogenic emission inventories, especially over China and South Asia.</p>
first_indexed 2024-04-09T15:26:43Z
format Article
id doaj.art-3ad03015c3de499c933793c7e9f05b78
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-09T15:26:43Z
publishDate 2023-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-3ad03015c3de499c933793c7e9f05b782023-04-28T14:20:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-04-01234955497510.5194/acp-23-4955-2023Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate modelG. Chua0G. Chua1V. Naik2L. W. Horowitz3Program in Atmospheric and Oceanic Science, Princeton University, Princeton, NJ, USANOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USANOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USANOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA<p>We explore the sensitivity of modeled tropospheric hydroxyl (OH) concentration trends to meteorology and near-term climate forcers (NTCFs), namely methane (CH<span class="inline-formula"><sub>4</sub></span>) nitrogen oxides <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>+</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1740a284ba68bb05139a5d17b881f526"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-4955-2023-ie00001.svg" width="93pt" height="13pt" src="acp-23-4955-2023-ie00001.png"/></svg:svg></span></span> carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs) and ozone-depleting substances (ODSs), using the Geophysical Fluid Dynamics Laboratory (GFDL)'s atmospheric chemistry–climate model, the Atmospheric Model version 4.1 (AM4.1), driven by emissions inventories developed for the Sixth Coupled Model Intercomparison Project (CMIP6) and forced by observed sea surface temperatures and sea ice prepared in support of the CMIP6 Atmospheric Model Intercomparison Project (AMIP) simulations. We find that the modeled tropospheric air-mass-weighted mean [OH] has increased by <span class="inline-formula">∼5</span> % globally from 1980 to 2014. We find that <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions and CH<span class="inline-formula"><sub>4</sub></span> concentrations dominate the modeled global trend, while CO emissions and meteorology were also important in driving regional trends. Modeled tropospheric NO<span class="inline-formula"><sub>2</sub></span> column trends are largely consistent with those retrieved from the Ozone Monitoring Instrument (OMI) satellite, but simulated CO column trends generally overestimate those retrieved from the Measurements of Pollution in The Troposphere (MOPITT) satellite, possibly reflecting biases in input anthropogenic emission inventories, especially over China and South Asia.</p>https://acp.copernicus.org/articles/23/4955/2023/acp-23-4955-2023.pdf
spellingShingle G. Chua
G. Chua
V. Naik
L. W. Horowitz
Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
Atmospheric Chemistry and Physics
title Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
title_full Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
title_fullStr Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
title_full_unstemmed Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
title_short Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
title_sort exploring the drivers of tropospheric hydroxyl radical trends in the geophysical fluid dynamics laboratory am4 1 atmospheric chemistry climate model
url https://acp.copernicus.org/articles/23/4955/2023/acp-23-4955-2023.pdf
work_keys_str_mv AT gchua exploringthedriversoftropospherichydroxylradicaltrendsinthegeophysicalfluiddynamicslaboratoryam41atmosphericchemistryclimatemodel
AT gchua exploringthedriversoftropospherichydroxylradicaltrendsinthegeophysicalfluiddynamicslaboratoryam41atmosphericchemistryclimatemodel
AT vnaik exploringthedriversoftropospherichydroxylradicaltrendsinthegeophysicalfluiddynamicslaboratoryam41atmosphericchemistryclimatemodel
AT lwhorowitz exploringthedriversoftropospherichydroxylradicaltrendsinthegeophysicalfluiddynamicslaboratoryam41atmosphericchemistryclimatemodel