On the oscillation of q-fractional difference equations

Abstract In this paper, sufficient conditions are established for the oscillation of solutions of q-fractional difference equations of the form { ∇ 0 α q x ( t ) + f 1 ( t , x ) = r ( t ) + f 2 ( t , x ) , t > 0 , lim t → 0 + q I 0 j − α x ( t ) = b j ( j = 1 , 2 , … , m ) , $$ \left \{ \textstyl...

Full description

Bibliographic Details
Main Author: Bahaaeldin Abdalla
Format: Article
Language:English
Published: SpringerOpen 2017-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-017-1316-x
_version_ 1828809597621633024
author Bahaaeldin Abdalla
author_facet Bahaaeldin Abdalla
author_sort Bahaaeldin Abdalla
collection DOAJ
description Abstract In this paper, sufficient conditions are established for the oscillation of solutions of q-fractional difference equations of the form { ∇ 0 α q x ( t ) + f 1 ( t , x ) = r ( t ) + f 2 ( t , x ) , t > 0 , lim t → 0 + q I 0 j − α x ( t ) = b j ( j = 1 , 2 , … , m ) , $$ \left \{ \textstyle\begin{array}{l} {}_{q}\nabla_{0}^{\alpha}x(t)+f_{1}(t,x)=r(t)+f_{2}(t,x), \quad t>0 ,\\ \lim_{t \to0^{+}}{{}_{q}I_{0}^{j-\alpha}x(t)}=b_{j} \quad(j=1,2,\ldots,m), \end{array}\displaystyle \right . $$ where m = ⌈ α ⌉ $m=\lceil\alpha\rceil$ , ∇ 0 α q ${}_{q}\nabla_{0}^{\alpha}$ is the Riemann-Liouville q-differential operator and I 0 m − α q ${}_{q}I_{0}^{m-\alpha}$ is the q-fractional integral. The results are also obtained when the Riemann-Liouville q-differential operator is replaced by Caputo q-fractional difference. Examples are provided to demonstrate the effectiveness of the main result.
first_indexed 2024-12-12T08:59:04Z
format Article
id doaj.art-3ad99673753a45a4903ee65891fd19c4
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-12T08:59:04Z
publishDate 2017-08-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-3ad99673753a45a4903ee65891fd19c42022-12-22T00:29:53ZengSpringerOpenAdvances in Difference Equations1687-18472017-08-012017111110.1186/s13662-017-1316-xOn the oscillation of q-fractional difference equationsBahaaeldin Abdalla0Department of Mathematics and Physical Sciences, Prince Sultan UniversityAbstract In this paper, sufficient conditions are established for the oscillation of solutions of q-fractional difference equations of the form { ∇ 0 α q x ( t ) + f 1 ( t , x ) = r ( t ) + f 2 ( t , x ) , t > 0 , lim t → 0 + q I 0 j − α x ( t ) = b j ( j = 1 , 2 , … , m ) , $$ \left \{ \textstyle\begin{array}{l} {}_{q}\nabla_{0}^{\alpha}x(t)+f_{1}(t,x)=r(t)+f_{2}(t,x), \quad t>0 ,\\ \lim_{t \to0^{+}}{{}_{q}I_{0}^{j-\alpha}x(t)}=b_{j} \quad(j=1,2,\ldots,m), \end{array}\displaystyle \right . $$ where m = ⌈ α ⌉ $m=\lceil\alpha\rceil$ , ∇ 0 α q ${}_{q}\nabla_{0}^{\alpha}$ is the Riemann-Liouville q-differential operator and I 0 m − α q ${}_{q}I_{0}^{m-\alpha}$ is the q-fractional integral. The results are also obtained when the Riemann-Liouville q-differential operator is replaced by Caputo q-fractional difference. Examples are provided to demonstrate the effectiveness of the main result.http://link.springer.com/article/10.1186/s13662-017-1316-xq-fractional difference equationsoscillation theory
spellingShingle Bahaaeldin Abdalla
On the oscillation of q-fractional difference equations
Advances in Difference Equations
q-fractional difference equations
oscillation theory
title On the oscillation of q-fractional difference equations
title_full On the oscillation of q-fractional difference equations
title_fullStr On the oscillation of q-fractional difference equations
title_full_unstemmed On the oscillation of q-fractional difference equations
title_short On the oscillation of q-fractional difference equations
title_sort on the oscillation of q fractional difference equations
topic q-fractional difference equations
oscillation theory
url http://link.springer.com/article/10.1186/s13662-017-1316-x
work_keys_str_mv AT bahaaeldinabdalla ontheoscillationofqfractionaldifferenceequations