Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province

Studying land comprehensive carrying capacity (LCCC) is the foundational and key requirement for determining land development planning and urban spatial development patterns of a region. However, the traditional evaluation method discounts the fuzziness and randomness of the evaluation index and its...

Full description

Bibliographic Details
Main Authors: Huisheng Yu, Xinyue Zhang, Wenbo Yu, Yanpeng Gao, Yuyu Xue, Wei Sun, Dongqi Sun
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/5/3336
Description
Summary:Studying land comprehensive carrying capacity (LCCC) is the foundational and key requirement for determining land development planning and urban spatial development patterns of a region. However, the traditional evaluation method discounts the fuzziness and randomness of the evaluation index and its results. The cloud model combines randomness and fuzziness to reveal the correlation between randomness and fuzziness using numerical feature entropy and is used to represent the granularity of a qualitative concept. This study used the Liaoning Province as the study area, and developed a multi-dimensional evaluation index system for LCCC using a normal cloud model. Based on this, the relationship between the different elements of geological condition, resources and environment, economic scale and urban construction were studied using the coupling coordination degree model that reflected not only the system interactions but also the strengths of its degree of coordination. Our results were as follows: (1) numerical feature entropy were evaluated to determine the carrying capacity level of the land, and comprehensive land carrying capacity evaluations were conducted in terms of both quantitative results and the reliability of the results, promoting the scientific application of uncertainty theory in the field of comprehensive land evaluation as well as carrying capacity. (2) Liaoning Province’s prefecture-level cities had distinctly different LCCC, demonstrating “low in the west and high in the east” spatial distribution characteristics. Cities with established economies and relatively strong infrastructures had larger comprehensive land carrying capacities. Overall, there was considerable consistency across the region, though the “low in the west and high in the east” spatial distribution characteristics affected the degree of coordination.
ISSN:2076-3417