Marginally stable equilibria in critical ecosystems

In this work we study the stability of the equilibria reached by ecosystems formed by a large number of species. The model we focus on are Lotka–Volterra equations with symmetric random interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneou...

Full description

Bibliographic Details
Main Authors: Giulio Biroli, Guy Bunin, Chiara Cammarota
Format: Article
Language:English
Published: IOP Publishing 2018-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aada58
Description
Summary:In this work we study the stability of the equilibria reached by ecosystems formed by a large number of species. The model we focus on are Lotka–Volterra equations with symmetric random interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous interactions the system displays multiple equilibria which are all marginally stable. This property allows us to obtain general identities between diversity and single species responses, which generalize and saturate May’s stability bound. By connecting the model to systems studied in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical spin-glass phase. This relation suggests new experimental ways to probe marginal stability.
ISSN:1367-2630