An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors

A physics-based model on polarization switching in ferroelectric polycrystalline films is proposed. The calculation results by the model agree well with experimental results regarding dynamic operations of ferroelectric-gate field-effect transistors (FeFETs). In the model, an angle <i>θ</i&...

Full description

Bibliographic Details
Main Authors: Shigeki Sakai, Mitsue Takahashi
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/17/5/1077
_version_ 1797264207415083008
author Shigeki Sakai
Mitsue Takahashi
author_facet Shigeki Sakai
Mitsue Takahashi
author_sort Shigeki Sakai
collection DOAJ
description A physics-based model on polarization switching in ferroelectric polycrystalline films is proposed. The calculation results by the model agree well with experimental results regarding dynamic operations of ferroelectric-gate field-effect transistors (FeFETs). In the model, an angle <i>θ</i> for each grain in the ferroelectric polycrystal is defined, where <i>θ</i> is the angle between the spontaneous polarization and the film normal direction. Under a constant electric field for a single-crystal film with <i>θ</i> = 0, phenomena regarding polarization domain nucleation and wall propagation are well described by the Kolmogorov–Avrami–Ishibashi theory. Since the electric fields are time-dependent in FeFET operations and the <i>θ</i> values are distributed in the polycrystalline film, the model in this paper forms an extended Kolmogorov–Avrami–Ishibashi (EKAI) model. Under a low electric field, the nucleation and domain propagation proceed according to thermally activated processes, meaning that switching the time scale of a grain with the angle <i>θ</i> is proportional to an exponential form as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">p</mi><mo>(</mo><mi mathvariant="normal">c</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">t</mi><mo>.</mo><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>c</mi><mi>o</mi><mi>s</mi><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></semantics></math></inline-formula>: the film-normal electric field]. Wide <i>θ</i> distribution makes the time response quite broad even on the logarithmic scale, which relates well with the broad switching time experimentally shown by FeFETs. The EKAI model is physics based and need not assume non-physical distribution functions in it.
first_indexed 2024-04-25T00:25:14Z
format Article
id doaj.art-3ae9cede14e84291aa71b6ce2b263bbf
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-04-25T00:25:14Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-3ae9cede14e84291aa71b6ce2b263bbf2024-03-12T16:49:11ZengMDPI AGMaterials1996-19442024-02-01175107710.3390/ma17051077An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect TransistorsShigeki Sakai0Mitsue Takahashi1National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, JapanNational Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, JapanA physics-based model on polarization switching in ferroelectric polycrystalline films is proposed. The calculation results by the model agree well with experimental results regarding dynamic operations of ferroelectric-gate field-effect transistors (FeFETs). In the model, an angle <i>θ</i> for each grain in the ferroelectric polycrystal is defined, where <i>θ</i> is the angle between the spontaneous polarization and the film normal direction. Under a constant electric field for a single-crystal film with <i>θ</i> = 0, phenomena regarding polarization domain nucleation and wall propagation are well described by the Kolmogorov–Avrami–Ishibashi theory. Since the electric fields are time-dependent in FeFET operations and the <i>θ</i> values are distributed in the polycrystalline film, the model in this paper forms an extended Kolmogorov–Avrami–Ishibashi (EKAI) model. Under a low electric field, the nucleation and domain propagation proceed according to thermally activated processes, meaning that switching the time scale of a grain with the angle <i>θ</i> is proportional to an exponential form as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">p</mi><mo>(</mo><mi mathvariant="normal">c</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">t</mi><mo>.</mo><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mi>c</mi><mi>o</mi><mi>s</mi><mi>θ</mi><mo>)</mo></mrow></semantics></math></inline-formula> [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></semantics></math></inline-formula>: the film-normal electric field]. Wide <i>θ</i> distribution makes the time response quite broad even on the logarithmic scale, which relates well with the broad switching time experimentally shown by FeFETs. The EKAI model is physics based and need not assume non-physical distribution functions in it.https://www.mdpi.com/1996-1944/17/5/1077ferroelectricdynamic modelpolarization switchingdomain wallferroelectric field-effect transistorpolycrystal
spellingShingle Shigeki Sakai
Mitsue Takahashi
An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
Materials
ferroelectric
dynamic model
polarization switching
domain wall
ferroelectric field-effect transistor
polycrystal
title An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
title_full An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
title_fullStr An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
title_full_unstemmed An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
title_short An Extended Kolmogorov–Avrami–Ishibashi (EKAI) Model to Simulate Dynamic Characteristics of Polycrystalline-Ferroelectric-Gate Field-Effect Transistors
title_sort extended kolmogorov avrami ishibashi ekai model to simulate dynamic characteristics of polycrystalline ferroelectric gate field effect transistors
topic ferroelectric
dynamic model
polarization switching
domain wall
ferroelectric field-effect transistor
polycrystal
url https://www.mdpi.com/1996-1944/17/5/1077
work_keys_str_mv AT shigekisakai anextendedkolmogorovavramiishibashiekaimodeltosimulatedynamiccharacteristicsofpolycrystallineferroelectricgatefieldeffecttransistors
AT mitsuetakahashi anextendedkolmogorovavramiishibashiekaimodeltosimulatedynamiccharacteristicsofpolycrystallineferroelectricgatefieldeffecttransistors
AT shigekisakai extendedkolmogorovavramiishibashiekaimodeltosimulatedynamiccharacteristicsofpolycrystallineferroelectricgatefieldeffecttransistors
AT mitsuetakahashi extendedkolmogorovavramiishibashiekaimodeltosimulatedynamiccharacteristicsofpolycrystallineferroelectricgatefieldeffecttransistors