A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction

A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...

Full description

Bibliographic Details
Main Authors: Hongli An, Colin Rogers
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2012-08-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2012.057
_version_ 1818252746186293248
author Hongli An
Colin Rogers
author_facet Hongli An
Colin Rogers
author_sort Hongli An
collection DOAJ
description A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
first_indexed 2024-12-12T16:29:04Z
format Article
id doaj.art-3aeabfa3e42a4a8fbc6bc27f729c6712
institution Directory Open Access Journal
issn 1815-0659
language English
last_indexed 2024-12-12T16:29:04Z
publishDate 2012-08-01
publisher National Academy of Science of Ukraine
record_format Article
series Symmetry, Integrability and Geometry: Methods and Applications
spelling doaj.art-3aeabfa3e42a4a8fbc6bc27f729c67122022-12-22T00:18:49ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592012-08-018057A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable ReductionHongli AnColin RogersA 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.http://dx.doi.org/10.3842/SIGMA.2012.057magnetogasdynamic systemelliptic vortexHamiltonian-Ermakov structureLax pair
spellingShingle Hongli An
Colin Rogers
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
Symmetry, Integrability and Geometry: Methods and Applications
magnetogasdynamic system
elliptic vortex
Hamiltonian-Ermakov structure
Lax pair
title A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_fullStr A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full_unstemmed A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_short A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_sort 2 1 dimensional non isothermal magnetogasdynamic system hamiltonian ermakov integrable reduction
topic magnetogasdynamic system
elliptic vortex
Hamiltonian-Ermakov structure
Lax pair
url http://dx.doi.org/10.3842/SIGMA.2012.057
work_keys_str_mv AT honglian a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT colinrogers a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT honglian 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT colinrogers 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction