A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2012-08-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2012.057 |
_version_ | 1818252746186293248 |
---|---|
author | Hongli An Colin Rogers |
author_facet | Hongli An Colin Rogers |
author_sort | Hongli An |
collection | DOAJ |
description | A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. |
first_indexed | 2024-12-12T16:29:04Z |
format | Article |
id | doaj.art-3aeabfa3e42a4a8fbc6bc27f729c6712 |
institution | Directory Open Access Journal |
issn | 1815-0659 |
language | English |
last_indexed | 2024-12-12T16:29:04Z |
publishDate | 2012-08-01 |
publisher | National Academy of Science of Ukraine |
record_format | Article |
series | Symmetry, Integrability and Geometry: Methods and Applications |
spelling | doaj.art-3aeabfa3e42a4a8fbc6bc27f729c67122022-12-22T00:18:49ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592012-08-018057A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable ReductionHongli AnColin RogersA 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.http://dx.doi.org/10.3842/SIGMA.2012.057magnetogasdynamic systemelliptic vortexHamiltonian-Ermakov structureLax pair |
spellingShingle | Hongli An Colin Rogers A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction Symmetry, Integrability and Geometry: Methods and Applications magnetogasdynamic system elliptic vortex Hamiltonian-Ermakov structure Lax pair |
title | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_fullStr | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full_unstemmed | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_short | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_sort | 2 1 dimensional non isothermal magnetogasdynamic system hamiltonian ermakov integrable reduction |
topic | magnetogasdynamic system elliptic vortex Hamiltonian-Ermakov structure Lax pair |
url | http://dx.doi.org/10.3842/SIGMA.2012.057 |
work_keys_str_mv | AT honglian a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT colinrogers a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT honglian 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT colinrogers 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction |