Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds
A series of Rh-based intermetallic compounds supported on silica was prepared and tested in alkene hydrogenation at room temperature. H2 and D2 were used as the hydrogen sources and the kinetic isotope effect (KIE) in hydrogenation was studied. In styrene hydrogenation, the KIE values differed stron...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-12-01
|
Series: | Science and Technology of Advanced Materials |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/14686996.2019.1642139 |
_version_ | 1819073782563733504 |
---|---|
author | Shinya Furukawa Pingping Yi Yuji Kunisada Ken-Ichi Shimizu |
author_facet | Shinya Furukawa Pingping Yi Yuji Kunisada Ken-Ichi Shimizu |
author_sort | Shinya Furukawa |
collection | DOAJ |
description | A series of Rh-based intermetallic compounds supported on silica was prepared and tested in alkene hydrogenation at room temperature. H2 and D2 were used as the hydrogen sources and the kinetic isotope effect (KIE) in hydrogenation was studied. In styrene hydrogenation, the KIE values differed strongly depending on the intermetallic phase, and some intermetallic compounds with Sb and Pb exhibited remarkably high KIE values (>28). An extraordinarily high KIE value of 91, which has never been reported in catalytic reactions at room temperature, was observed particularly for RhPb2/SiO2. RhPb2/SiO2 also showed high KIE values in the hydrogenation of other unsaturated hydrocarbons such as phenylacetylene and cyclohexene. The density functional theory calculation focused on the surface diffusion of hydrogen suggested no contribution of the quantum tunneling effect to the high KIE values observed. A kinetic study revealed that the dissociative adsorption of H2 (D2) was the rate-determining step in the styrene hydrogenation over RhPb2/SiO2. We propose that the large KIE originates from the quantum tunneling occurring at the hydrogen adsorption process with the aid of the specific surface structure of the intermetallic compound and adsorbate alkene. |
first_indexed | 2024-12-21T17:59:06Z |
format | Article |
id | doaj.art-3af402a6c5c146709b48123fc497cb62 |
institution | Directory Open Access Journal |
issn | 1468-6996 1878-5514 |
language | English |
last_indexed | 2024-12-21T17:59:06Z |
publishDate | 2019-12-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | Science and Technology of Advanced Materials |
spelling | doaj.art-3af402a6c5c146709b48123fc497cb622022-12-21T18:55:06ZengTaylor & Francis GroupScience and Technology of Advanced Materials1468-69961878-55142019-12-0120180581210.1080/14686996.2019.16421391642139Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compoundsShinya Furukawa0Pingping Yi1Yuji Kunisada2Ken-Ichi Shimizu3Hokkaido UniversityHokkaido UniversityHokkaido UniversityHokkaido UniversityA series of Rh-based intermetallic compounds supported on silica was prepared and tested in alkene hydrogenation at room temperature. H2 and D2 were used as the hydrogen sources and the kinetic isotope effect (KIE) in hydrogenation was studied. In styrene hydrogenation, the KIE values differed strongly depending on the intermetallic phase, and some intermetallic compounds with Sb and Pb exhibited remarkably high KIE values (>28). An extraordinarily high KIE value of 91, which has never been reported in catalytic reactions at room temperature, was observed particularly for RhPb2/SiO2. RhPb2/SiO2 also showed high KIE values in the hydrogenation of other unsaturated hydrocarbons such as phenylacetylene and cyclohexene. The density functional theory calculation focused on the surface diffusion of hydrogen suggested no contribution of the quantum tunneling effect to the high KIE values observed. A kinetic study revealed that the dissociative adsorption of H2 (D2) was the rate-determining step in the styrene hydrogenation over RhPb2/SiO2. We propose that the large KIE originates from the quantum tunneling occurring at the hydrogen adsorption process with the aid of the specific surface structure of the intermetallic compound and adsorbate alkene.http://dx.doi.org/10.1080/14686996.2019.1642139kinetic isotope effectintermetallic compoundhydrogenationalkene |
spellingShingle | Shinya Furukawa Pingping Yi Yuji Kunisada Ken-Ichi Shimizu Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds Science and Technology of Advanced Materials kinetic isotope effect intermetallic compound hydrogenation alkene |
title | Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds |
title_full | Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds |
title_fullStr | Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds |
title_full_unstemmed | Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds |
title_short | Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds |
title_sort | extraordinarily large kinetic isotope effect on alkene hydrogenation over rh based intermetallic compounds |
topic | kinetic isotope effect intermetallic compound hydrogenation alkene |
url | http://dx.doi.org/10.1080/14686996.2019.1642139 |
work_keys_str_mv | AT shinyafurukawa extraordinarilylargekineticisotopeeffectonalkenehydrogenationoverrhbasedintermetalliccompounds AT pingpingyi extraordinarilylargekineticisotopeeffectonalkenehydrogenationoverrhbasedintermetalliccompounds AT yujikunisada extraordinarilylargekineticisotopeeffectonalkenehydrogenationoverrhbasedintermetalliccompounds AT kenichishimizu extraordinarilylargekineticisotopeeffectonalkenehydrogenationoverrhbasedintermetalliccompounds |