Summary: | Tetramethylpyrazine (TMP) is a traditional Chinese herbal medicine with strong anti-inflammatory and cartilage protection activities, and thus a promising candidate for treating osteoarthritis. However, TMP is rapidly cleared from the joint cavity after intra-articular injection and requires multiple injections to maintain efficacy. The aim of this study was to encapsulate TMP into poly (lactic-co-glycolic acid) (PLGA) microspheres to enhance the TMP retention in the joint, reducing injection frequencies and decreasing dosage. TMP microspheres were prepared by emulsion/solvent evaporation method. The intra-articular retention of the drug was assessed by detecting the drug concentration distributed in the joint tissue at different time points. The therapeutic effect of TMP microspheres was evaluated by the swelling of knee joints and histologic analysis in papain-induced OA rat model. The prepared freeze-dried microspheres with a particle size of about 10 µm can effectively prolong the retention time of the drug in the articular cavity to 30 d, which is 4.7 times that of the TMP solution. Intra-articular injection of TMP microspheres efficiently relieved inflammatory symptoms, improved joint lesions and decreased the depletion of proteoglycan. In conclusion, intra-articular injection of TMP loaded microspheres was a promising therapeutic method in the treatment of OA. Keywords: Osteoarthritis, Tetramethylpyrazine, Intra-articular injection, PLGA microspheres, Retention, Pharmacodynamics
|