Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)

Tunnel solar dryer is the recently used drying method for better quality and safety of parchment coffee. However, the higher variation of drying temperature and RH along the long tunnel solar dryer results in a heterogeneous environment in the tunnel, which could make parchment coffee dried at diffe...

Full description

Bibliographic Details
Main Authors: Zenaba Kadir Abdissa, Yetenayet B. Tola, Addisalem Hailu Taye, Hayat Hassen Mohammed
Format: Article
Language:English
Published: Hindawi Limited 2023-01-01
Series:International Journal of Food Science
Online Access:http://dx.doi.org/10.1155/2023/6677592
_version_ 1797666898951798784
author Zenaba Kadir Abdissa
Yetenayet B. Tola
Addisalem Hailu Taye
Hayat Hassen Mohammed
author_facet Zenaba Kadir Abdissa
Yetenayet B. Tola
Addisalem Hailu Taye
Hayat Hassen Mohammed
author_sort Zenaba Kadir Abdissa
collection DOAJ
description Tunnel solar dryer is the recently used drying method for better quality and safety of parchment coffee. However, the higher variation of drying temperature and RH along the long tunnel solar dryer results in a heterogeneous environment in the tunnel, which could make parchment coffee dried at different times or with different moisture contents. This study is aimed at investigating the effect of solar tunnel dryer zones at different zones of the dryer, divided into three zones from the inlet to the exit side of the drier and drying layer thicknesses on the drying time, drying kinetics, physicochemical, sensory, and fungal growth loads of parchment coffee. Furthermore, seven mathematical models were evaluated to select the best-fitting model for a specific zone to predict drying time. Results showed that dryer zones significantly (p<0.05) interacted with layer thickness for most of the measured parameters except titratable acidity and sensory properties. The dryer zone, coupled with the reduction in drying layer thickness, caused an increase in effective diffusivity and moisture removal rate and reduced drying time. The drying time to reach constant moisture content varied from 14 to 17 hours. Overall raw bean, cup, and total quality varied from 36.3 to 37, 48 to 51, and 84.3 to 87.3%, respectively. Values for physicochemical parameters ranged from 5.3 to 6.9 (pH), 2.1 to 2.6% (titratable acidity), 2.3 to 4.3°Brix TSS, 10.9 to 15.2% (ether extract), 39.2 to 53.5GAE/g (total phenolic content), and 38.5 to 59.2 (DPPH scavenging capacity). The fungal infection percentage at the end of drying varied from 4 to 93.3%, which could be associated with potential mycotoxin formation if recommended conditions were not maintained. In general, for better quality, similar drying times, and a lesser fungal load, it is recommended to use 4, 5, and 6 cm layer thickness in zones one, two, and three, respectively. The drying kinetics of parchment coffee in different dryer zones with different drying layer thicknesses showed variation. Zone one at 2 and 4 cm layer thicknesses is best described by the Verma model. Four- and six-centimetre layer thicknesses in zones 2 and 3 are best described by the modified Midilli model.
first_indexed 2024-03-11T20:05:19Z
format Article
id doaj.art-3af4eacc5d414483bc12a614c16c8f35
institution Directory Open Access Journal
issn 2314-5765
language English
last_indexed 2024-03-11T20:05:19Z
publishDate 2023-01-01
publisher Hindawi Limited
record_format Article
series International Journal of Food Science
spelling doaj.art-3af4eacc5d414483bc12a614c16c8f352023-10-04T00:00:04ZengHindawi LimitedInternational Journal of Food Science2314-57652023-01-01202310.1155/2023/6677592Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)Zenaba Kadir Abdissa0Yetenayet B. Tola1Addisalem Hailu Taye2Hayat Hassen Mohammed3Jimma University College of Agriculture and Veterinary MedicineJimma University College of Agriculture and Veterinary MedicineJimma University College of Agriculture and Veterinary MedicineJimma University College of Agriculture and Veterinary MedicineTunnel solar dryer is the recently used drying method for better quality and safety of parchment coffee. However, the higher variation of drying temperature and RH along the long tunnel solar dryer results in a heterogeneous environment in the tunnel, which could make parchment coffee dried at different times or with different moisture contents. This study is aimed at investigating the effect of solar tunnel dryer zones at different zones of the dryer, divided into three zones from the inlet to the exit side of the drier and drying layer thicknesses on the drying time, drying kinetics, physicochemical, sensory, and fungal growth loads of parchment coffee. Furthermore, seven mathematical models were evaluated to select the best-fitting model for a specific zone to predict drying time. Results showed that dryer zones significantly (p<0.05) interacted with layer thickness for most of the measured parameters except titratable acidity and sensory properties. The dryer zone, coupled with the reduction in drying layer thickness, caused an increase in effective diffusivity and moisture removal rate and reduced drying time. The drying time to reach constant moisture content varied from 14 to 17 hours. Overall raw bean, cup, and total quality varied from 36.3 to 37, 48 to 51, and 84.3 to 87.3%, respectively. Values for physicochemical parameters ranged from 5.3 to 6.9 (pH), 2.1 to 2.6% (titratable acidity), 2.3 to 4.3°Brix TSS, 10.9 to 15.2% (ether extract), 39.2 to 53.5GAE/g (total phenolic content), and 38.5 to 59.2 (DPPH scavenging capacity). The fungal infection percentage at the end of drying varied from 4 to 93.3%, which could be associated with potential mycotoxin formation if recommended conditions were not maintained. In general, for better quality, similar drying times, and a lesser fungal load, it is recommended to use 4, 5, and 6 cm layer thickness in zones one, two, and three, respectively. The drying kinetics of parchment coffee in different dryer zones with different drying layer thicknesses showed variation. Zone one at 2 and 4 cm layer thicknesses is best described by the Verma model. Four- and six-centimetre layer thicknesses in zones 2 and 3 are best described by the modified Midilli model.http://dx.doi.org/10.1155/2023/6677592
spellingShingle Zenaba Kadir Abdissa
Yetenayet B. Tola
Addisalem Hailu Taye
Hayat Hassen Mohammed
Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
International Journal of Food Science
title Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
title_full Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
title_fullStr Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
title_full_unstemmed Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
title_short Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee (Coffea arabica L.)
title_sort harmonizing drying time layer thickness and drier zones for drying kinetics quality and safety of solar tunnel dried wet processed parchment coffee coffea arabica l
url http://dx.doi.org/10.1155/2023/6677592
work_keys_str_mv AT zenabakadirabdissa harmonizingdryingtimelayerthicknessanddrierzonesfordryingkineticsqualityandsafetyofsolartunneldriedwetprocessedparchmentcoffeecoffeaarabical
AT yetenayetbtola harmonizingdryingtimelayerthicknessanddrierzonesfordryingkineticsqualityandsafetyofsolartunneldriedwetprocessedparchmentcoffeecoffeaarabical
AT addisalemhailutaye harmonizingdryingtimelayerthicknessanddrierzonesfordryingkineticsqualityandsafetyofsolartunneldriedwetprocessedparchmentcoffeecoffeaarabical
AT hayathassenmohammed harmonizingdryingtimelayerthicknessanddrierzonesfordryingkineticsqualityandsafetyofsolartunneldriedwetprocessedparchmentcoffeecoffeaarabical