Blow-up for p-Laplacian parabolic equations

In this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sh...

Full description

Bibliographic Details
Main Authors: Yuxiang Li, Chunhong Xie
Format: Article
Language:English
Published: Texas State University 2003-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2003/20/abstr.html
_version_ 1819039064360222720
author Yuxiang Li
Chunhong Xie
author_facet Yuxiang Li
Chunhong Xie
author_sort Yuxiang Li
collection DOAJ
description In this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sharp blow-up condition involves the first eigenvalue of the problem $$ - abla(| abla psi|^{p-2} abla psi)=lambda |psi|^{p-2}psi,quadhbox{in } Omega;quad psi|_{partialOmega}=0. $$
first_indexed 2024-12-21T08:47:16Z
format Article
id doaj.art-3b04a6eb007743bebc8f2b6266b34177
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-21T08:47:16Z
publishDate 2003-02-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-3b04a6eb007743bebc8f2b6266b341772022-12-21T19:09:48ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01200320112Blow-up for p-Laplacian parabolic equationsYuxiang LiChunhong XieIn this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sharp blow-up condition involves the first eigenvalue of the problem $$ - abla(| abla psi|^{p-2} abla psi)=lambda |psi|^{p-2}psi,quadhbox{in } Omega;quad psi|_{partialOmega}=0. $$http://ejde.math.txstate.edu/Volumes/2003/20/abstr.htmlp-Laplacian parabolic equationsblow-upglobal existencefirst eigenvalue.
spellingShingle Yuxiang Li
Chunhong Xie
Blow-up for p-Laplacian parabolic equations
Electronic Journal of Differential Equations
p-Laplacian parabolic equations
blow-up
global existence
first eigenvalue.
title Blow-up for p-Laplacian parabolic equations
title_full Blow-up for p-Laplacian parabolic equations
title_fullStr Blow-up for p-Laplacian parabolic equations
title_full_unstemmed Blow-up for p-Laplacian parabolic equations
title_short Blow-up for p-Laplacian parabolic equations
title_sort blow up for p laplacian parabolic equations
topic p-Laplacian parabolic equations
blow-up
global existence
first eigenvalue.
url http://ejde.math.txstate.edu/Volumes/2003/20/abstr.html
work_keys_str_mv AT yuxiangli blowupforplaplacianparabolicequations
AT chunhongxie blowupforplaplacianparabolicequations