Blow-up for p-Laplacian parabolic equations
In this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sh...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2003-02-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2003/20/abstr.html |
_version_ | 1819039064360222720 |
---|---|
author | Yuxiang Li Chunhong Xie |
author_facet | Yuxiang Li Chunhong Xie |
author_sort | Yuxiang Li |
collection | DOAJ |
description | In this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sharp blow-up condition involves the first eigenvalue of the problem $$ - abla(| abla psi|^{p-2} abla psi)=lambda |psi|^{p-2}psi,quadhbox{in } Omega;quad psi|_{partialOmega}=0. $$ |
first_indexed | 2024-12-21T08:47:16Z |
format | Article |
id | doaj.art-3b04a6eb007743bebc8f2b6266b34177 |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-21T08:47:16Z |
publishDate | 2003-02-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-3b04a6eb007743bebc8f2b6266b341772022-12-21T19:09:48ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01200320112Blow-up for p-Laplacian parabolic equationsYuxiang LiChunhong XieIn this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$ u_t= abla(| abla u|^{p-2} abla u)+lambda |u|^{q-2}u,quad hbox{in } Omega_T, $$ where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up critical exponent and we show that the sharp blow-up condition involves the first eigenvalue of the problem $$ - abla(| abla psi|^{p-2} abla psi)=lambda |psi|^{p-2}psi,quadhbox{in } Omega;quad psi|_{partialOmega}=0. $$http://ejde.math.txstate.edu/Volumes/2003/20/abstr.htmlp-Laplacian parabolic equationsblow-upglobal existencefirst eigenvalue. |
spellingShingle | Yuxiang Li Chunhong Xie Blow-up for p-Laplacian parabolic equations Electronic Journal of Differential Equations p-Laplacian parabolic equations blow-up global existence first eigenvalue. |
title | Blow-up for p-Laplacian parabolic equations |
title_full | Blow-up for p-Laplacian parabolic equations |
title_fullStr | Blow-up for p-Laplacian parabolic equations |
title_full_unstemmed | Blow-up for p-Laplacian parabolic equations |
title_short | Blow-up for p-Laplacian parabolic equations |
title_sort | blow up for p laplacian parabolic equations |
topic | p-Laplacian parabolic equations blow-up global existence first eigenvalue. |
url | http://ejde.math.txstate.edu/Volumes/2003/20/abstr.html |
work_keys_str_mv | AT yuxiangli blowupforplaplacianparabolicequations AT chunhongxie blowupforplaplacianparabolicequations |