Facile and Rapid Synthesis of Durable SSZ-13 Catalyst Using Choline Chloride Template for Methanol-to-Olefins Reaction

In the current study, a facile and rapid synthesis approach for a SSZ-13 catalyst using choline chloride (CC) as a template was proposed, and the catalytic performance for the methanol-to-olefins (MTO) reaction was examined. With a proper amount of CC addition (i.e., m(CC)/m(SiO<sub>2</sub&...

Full description

Bibliographic Details
Main Authors: Xiongchao Lin, Sasha Yang, Xiaojia Li, Caihong Wang, Yonggang Wang
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/10/1250
Description
Summary:In the current study, a facile and rapid synthesis approach for a SSZ-13 catalyst using choline chloride (CC) as a template was proposed, and the catalytic performance for the methanol-to-olefins (MTO) reaction was examined. With a proper amount of CC addition (i.e., m(CC)/m(SiO<sub>2</sub>) = 0.14), uniform and homogeneously distributed cubic SSZ-13 crystals were obtained within 4 h with lower aggregation. The synthesized catalyst demonstrated excellent porous features with a total specific surface area and mesopore volume of 641.71 m<sup>2</sup>·g<sup>−1</sup> and 0.04 cm<sup>3</sup>·g<sup>−1</sup>, respectively. The optimized strong and weak acid sites on SSZ-13 were obtained by regulating the m(CC)/m(SiO<sub>2</sub>) ratio. The less strong acid sites and a larger amount of weak acid sites in the synthesized catalyst were conducive to the catalytic performance of the MTO reaction under a lower reaction temperature (450 °C). The appropriate acidity and well-developed pore structure of synthesized SSZ-13 could also slow down the carbon deposition rate and, thus, significantly improve the catalytic lifetime of the catalyst. The methanol conversion rate and initial selectivity of light olefin using the synthesized catalyst could maintain over 95% and 50%, respectively, and a lifetime of 172 min was achieved. Although the low olefin selectivity of the synthesized SSZ-13 catalyst was slightly lower than that of the purchased one, its desirable features were thought to have good potential for industrial application.
ISSN:2073-4344