The Wound-Healing Activity of PEDOT-PSS in Animals
This study evaluated the wound-healing activity of a polymer, Poly(3,4-ethylenedioxythiophene):poly-(styrene sulfonate) (PEDOT: PSS), and determined its mechanism based on angiogenic activity in a full-thickness excision wound model in Spraque Dawley (SD) rats. Administering PEDOT: PSS (1.6) 1.5 ppm...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/16/12539 |
Summary: | This study evaluated the wound-healing activity of a polymer, Poly(3,4-ethylenedioxythiophene):poly-(styrene sulfonate) (PEDOT: PSS), and determined its mechanism based on angiogenic activity in a full-thickness excision wound model in Spraque Dawley (SD) rats. Administering PEDOT: PSS (1.6) 1.5 ppm at a dose of 50 mg/kg/day significantly improved wound healing in the SD rats on the eleventh day after the incision was created. PEDOT: PSS-treated animals presented no anti-inflammatory skin effects; however, there was an increase in angiogenic behavior. VEGF was found to be significantly elevated in the PEDOT: PSS-treated groups seven days post-incision. However, only a higher concentration of PEDOT: PSS increased TGF-β1 expression within the same time frame. Our results showed that PEDOT: PSS enhances wound healing activity, mainly in terms of its angiogenic effects. In this paper, we describe the highly conductive macromolecular material PEDOT: PSS, which demonstrated accelerated wound-healing activity in the animal incision model. The results will further provide information regarding the application of PEDOT: PSS as a dressing for medical use. |
---|---|
ISSN: | 1661-6596 1422-0067 |