Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow

In this paper, we formulate the first law of global thermodynamics for stationary states of the binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one and show that the internal energy <inline-formula><math xmlns="http://www.w3.org/1998/Math...

Full description

Bibliographic Details
Main Authors: Anna Maciołek, Robert Hołyst, Karol Makuch, Konrad Giżyński, Paweł J. Żuk
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/11/1505
_version_ 1797459393794539520
author Anna Maciołek
Robert Hołyst
Karol Makuch
Konrad Giżyński
Paweł J. Żuk
author_facet Anna Maciołek
Robert Hołyst
Karol Makuch
Konrad Giżyński
Paweł J. Żuk
author_sort Anna Maciołek
collection DOAJ
description In this paper, we formulate the first law of global thermodynamics for stationary states of the binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one and show that the internal energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><msup><mi>S</mi><mo>*</mo></msup><mo>,</mo><mi>V</mi><mo>,</mo><msub><mi>N</mi><mn>1</mn></msub><mo>,</mo><msub><mi>N</mi><mn>2</mn></msub><mo>,</mo><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup><mo>)</mo></mrow></semantics></math></inline-formula> is the function of the following parameters of state: a non-equilibrium entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mo>*</mo></msup></semantics></math></inline-formula>, volume <i>V</i>, number of particles of the first component, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mn>1</mn></msub></semantics></math></inline-formula>, number of particles of the second component <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mn>2</mn></msub></semantics></math></inline-formula> and the renormalized degrees of freedom. The parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>1</mn></msub><mo>,</mo><msub><mi>N</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> satisfy the relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>/</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>+</mo><msub><mi>N</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>/</mo><msub><mi>f</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>2</mn></msub><mo>/</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>+</mo><msub><mi>N</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup><mo>/</mo><msub><mi>f</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>2</mn></msub></semantics></math></inline-formula> are the degrees of freedom for each component respectively). Thus, only 5 parameters of state describe the non-equilibrium state of the binary mixture in the heat flow. We calculate the non-equilibrium entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mo>*</mo></msup></semantics></math></inline-formula> and new thermodynamic parameters of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> explicitly. The latter are responsible for heat generation due to the concentration gradients. The theory reduces to equilibrium thermodynamics, when the heat flux goes to zero. As in equilibrium thermodynamics, the steady-state fundamental equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.
first_indexed 2024-03-09T16:50:42Z
format Article
id doaj.art-3b40d2e7b0f94cf3837a97fcd5279f8b
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T16:50:42Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-3b40d2e7b0f94cf3837a97fcd5279f8b2023-11-24T14:40:57ZengMDPI AGEntropy1099-43002023-10-012511150510.3390/e25111505Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat FlowAnna Maciołek0Robert Hołyst1Karol Makuch2Konrad Giżyński3Paweł J. Żuk4Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, PolandIn this paper, we formulate the first law of global thermodynamics for stationary states of the binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one and show that the internal energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><msup><mi>S</mi><mo>*</mo></msup><mo>,</mo><mi>V</mi><mo>,</mo><msub><mi>N</mi><mn>1</mn></msub><mo>,</mo><msub><mi>N</mi><mn>2</mn></msub><mo>,</mo><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup><mo>)</mo></mrow></semantics></math></inline-formula> is the function of the following parameters of state: a non-equilibrium entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mo>*</mo></msup></semantics></math></inline-formula>, volume <i>V</i>, number of particles of the first component, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mn>1</mn></msub></semantics></math></inline-formula>, number of particles of the second component <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mn>2</mn></msub></semantics></math></inline-formula> and the renormalized degrees of freedom. The parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>1</mn></msub><mo>,</mo><msub><mi>N</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> satisfy the relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>/</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>+</mo><msub><mi>N</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>/</mo><msub><mi>f</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>2</mn></msub><mo>/</mo><mrow><mo>(</mo><msub><mi>N</mi><mn>1</mn></msub><mo>+</mo><msub><mi>N</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup><mo>/</mo><msub><mi>f</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>2</mn></msub></semantics></math></inline-formula> are the degrees of freedom for each component respectively). Thus, only 5 parameters of state describe the non-equilibrium state of the binary mixture in the heat flow. We calculate the non-equilibrium entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mo>*</mo></msup></semantics></math></inline-formula> and new thermodynamic parameters of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mn>1</mn><mo>*</mo></msubsup><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> explicitly. The latter are responsible for heat generation due to the concentration gradients. The theory reduces to equilibrium thermodynamics, when the heat flux goes to zero. As in equilibrium thermodynamics, the steady-state fundamental equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.https://www.mdpi.com/1099-4300/25/11/1505non-equilibrium thermodynamicsentropy and internal energymixtures and parameters of state
spellingShingle Anna Maciołek
Robert Hołyst
Karol Makuch
Konrad Giżyński
Paweł J. Żuk
Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
Entropy
non-equilibrium thermodynamics
entropy and internal energy
mixtures and parameters of state
title Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
title_full Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
title_fullStr Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
title_full_unstemmed Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
title_short Parameters of State in the Global Thermodynamics of Binary Ideal Gas Mixtures in a Stationary Heat Flow
title_sort parameters of state in the global thermodynamics of binary ideal gas mixtures in a stationary heat flow
topic non-equilibrium thermodynamics
entropy and internal energy
mixtures and parameters of state
url https://www.mdpi.com/1099-4300/25/11/1505
work_keys_str_mv AT annamaciołek parametersofstateintheglobalthermodynamicsofbinaryidealgasmixturesinastationaryheatflow
AT roberthołyst parametersofstateintheglobalthermodynamicsofbinaryidealgasmixturesinastationaryheatflow
AT karolmakuch parametersofstateintheglobalthermodynamicsofbinaryidealgasmixturesinastationaryheatflow
AT konradgizynski parametersofstateintheglobalthermodynamicsofbinaryidealgasmixturesinastationaryheatflow
AT pawełjzuk parametersofstateintheglobalthermodynamicsofbinaryidealgasmixturesinastationaryheatflow