Summary: | In the InSAR solution, the uneven distribution of permanent scatterer candidates (PSCs) or slowly decoherent filtering phase (SDFP) pixel density in a region of variable radar reflection feature can cause local low accuracy in single interferometry. PSCs with higher-order coherence in Permanent Scatter InSAR (PS-InSAR) are generally distributed in those point targets of urban built-up areas, and SDFP pixels in Small Baseline Subset InSAR (SBAS-InSAR) are generally distributed in those distributed targets of countryside vegetation areas. According to the respective reliability of PS-InSAR and SBAS-InSAR for different radar reflection features, a new land subsidence monitoring method is proposed, which combines PS-SBAS InSAR by data fusion of different interferometry in different radar reflection regions. Density-based spatial clustering of applications with noise (DBSCAN) clustering analysis is carried out on the density of PSCs with higher-order coherence in PS-InSAR processing to zone the region of variable radar reflection features for acquiring the boundary of data fusion. The vector monitoring data of PS-InSAR is retained in the dense region of PSCs with higher-order coherence, and the vector monitoring data of SBAS-InSAR is used in the sparse region of PSCs with higher-order coherence. The vertical displacements from PS-InSAR and SBAS-InSAR are integrated to obtain the optimal land subsidence. The verification case of 38 SAR images acquired by the Sentinel-1A in Suzhou city indicates that the proposed method can automatically choose a matched interferometry technique according to the variability of radar reflection features in the region and improve the accuracy of using a single interferometry method. The integrated method of the combined field is more representative of overall subsidence characteristics than the PS-InSAR-only or SBAS-InSAR-only results, and it is better suited for the assessment of the impact of land subsidence over the study area. The research results of this paper can provide a useful comprehensive reference for city planning and help decrease land subsidence in Suzhou.
|