Peculiarities of High-Energy Induction Heating during Surface Hardening in Hybrid Processing Conditions

This paper presents the results obtained when combining mechanical and surface-thermal operations, using the same process equipment. The paper also demonstrates the possibility of implementing high-energy heating with high-frequency currents, and proposes using an integral temperature–time character...

Full description

Bibliographic Details
Main Authors: Vadim Y. Skeeba, Vladimir V. Ivancivsky, Nikita V. Martyushev
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/9/1354
Description
Summary:This paper presents the results obtained when combining mechanical and surface-thermal operations, using the same process equipment. The paper also demonstrates the possibility of implementing high-energy heating with high-frequency currents, and proposes using an integral temperature–time characteristic as the main parameter to specify surface quenching modes. The numerical values of the integral temperature–time characteristic are to be related to the processing modes and the depth of hardening. The experiments confirmed that an increase in the capacity will be commensurate with an increase in power consumption when a volumetric heating scheme (with a hardening depth of 0.5 mm) is realized. However, during the realization of a volumetric heating scheme, when the 0.7 mm depth of the hardened layer is at the boundary of the “hot” depth of the current penetration into the metal (the beginning of the intermediate heating scheme), the increase in the processing capacity will be higher than that in power consumption.
ISSN:2075-4701