On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria

У статтi розглядається задача лексикографiчно-лексикографiчної багатокритерiальної оптимiзацiї з iнтервальними оцiнками. Рiшення приймається ґрунтуючись на скалярних критерiях, якi розбито на групи. В межах кожної iз груп критерiї проранжовано у субординацiї строгого ранжування i можуть мiстити iнте...

Full description

Bibliographic Details
Main Author: А. Ю. Брила
Format: Article
Language:English
Published: State University “Uzhhorod National University” 2019-12-01
Series:Науковий вісник Ужгородського університету. Серія: Математика і інформатика
Subjects:
Online Access:http://visnyk-math.uzhnu.edu.ua/article/view/189720
_version_ 1819118735010562048
author А. Ю. Брила
author_facet А. Ю. Брила
author_sort А. Ю. Брила
collection DOAJ
description У статтi розглядається задача лексикографiчно-лексикографiчної багатокритерiальної оптимiзацiї з iнтервальними оцiнками. Рiшення приймається ґрунтуючись на скалярних критерiях, якi розбито на групи. В межах кожної iз груп критерiї проранжовано у субординацiї строгого ранжування i можуть мiстити iнтервальнi оцiнки. Групи критерiїв також проранжовано у субординацiї строгого ранжування. Iнтервальнi оцiнки визначено таким чином, що центр iнтервалу представляє очiкуване значення параметра, а ширина iнтервалу вiдображає його невизначенiсть. При порiвняннi двох альтернатив використовується правило вiддачi переваги, згiдно з яким перевагу має та альтернатива, для якої або центр iнтервалу (очiкуване значення) є бiльшим, або ж при рiвних центрах iнтервалу є меншою ширина iнтервалу (меншою є невизначенiсть). Постановка даної задачi може мiстити обмеження допустимостi на деякi iз критерiїв. Цi обмеження виражають мiнiмальну межу, за якої даний критерiй ще становить цiннiсть для особи що приймає рiшення. Порушення цiєї межi означає, що прийняття рiшення за даним критерiєм є неприйнятним, а отже, даний критерiй повинен бути виключений iз подальшого розгляду. Множина допустимих розв’язкiв задається системою лiнiйних обмежень, якi також можуть мiстити iнтервальнi оцiнки. Iнтервальнi оцiнки можуть бути присутнi як коефiцiєнти при невiдомих, так i у векторi обмежень. Подiбнi обмеження допустимостi можуть бути накладенi i на цiлi групи критерiїв. Для розв’язання цiєї задачi запропоновано пiдхiд, який ґрунтується на зведеннi її до задачi скалярної оптимiзацiї. На першому кроцi розглядувана задача лексикографiчно-лексикографiчної багатокритерiальної оптимiзацiї з iнтервальними оцiнками та альтернативними складовими зводиться до задачi лексикографiчно-лексикографiчної оптимiзацiї з лексикографiчними обмеженнями без iнтервальних оцiнок. На другому кроцi дана задача може бути зведена до лiнiйної задачi лексикографiчної оптимiзацiї, яка у свою чергу може бути зведена до звичайної задачi лiнiйного програмування. Перехiд вiд задачi лексикографiчно-лексикографiчної оптимiзацiї з iнтервальними оцiнками до задачi лексикографiчно-лексикографiчної оптимiзацiї з лексикографiчними обмеженнями i у подальшому до задачi скалярної оптимiзацiї є можливим завдяки використанню зваженої суми критерiїв з вiдповiдними коефiцiєнтами. З використанням зваженої суми i вiдповiдних коефiцiєнтiв вдається також врахувати i обмеження допустимостi.
first_indexed 2024-12-22T05:53:36Z
format Article
id doaj.art-3b5ed98272a249c4bb53bd75789abbe9
institution Directory Open Access Journal
issn 2616-7700
language English
last_indexed 2024-12-22T05:53:36Z
publishDate 2019-12-01
publisher State University “Uzhhorod National University”
record_format Article
series Науковий вісник Ужгородського університету. Серія: Математика і інформатика
spelling doaj.art-3b5ed98272a249c4bb53bd75789abbe92022-12-21T18:36:48ZengState University “Uzhhorod National University”Науковий вісник Ужгородського університету. Серія: Математика і інформатика2616-77002019-12-0102(35)9710410.24144/2616-7700.2019.2(35).97-104189720On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteriaА. Ю. Брила0ДВНЗ "Ужгородський національний університет"У статтi розглядається задача лексикографiчно-лексикографiчної багатокритерiальної оптимiзацiї з iнтервальними оцiнками. Рiшення приймається ґрунтуючись на скалярних критерiях, якi розбито на групи. В межах кожної iз груп критерiї проранжовано у субординацiї строгого ранжування i можуть мiстити iнтервальнi оцiнки. Групи критерiїв також проранжовано у субординацiї строгого ранжування. Iнтервальнi оцiнки визначено таким чином, що центр iнтервалу представляє очiкуване значення параметра, а ширина iнтервалу вiдображає його невизначенiсть. При порiвняннi двох альтернатив використовується правило вiддачi переваги, згiдно з яким перевагу має та альтернатива, для якої або центр iнтервалу (очiкуване значення) є бiльшим, або ж при рiвних центрах iнтервалу є меншою ширина iнтервалу (меншою є невизначенiсть). Постановка даної задачi може мiстити обмеження допустимостi на деякi iз критерiїв. Цi обмеження виражають мiнiмальну межу, за якої даний критерiй ще становить цiннiсть для особи що приймає рiшення. Порушення цiєї межi означає, що прийняття рiшення за даним критерiєм є неприйнятним, а отже, даний критерiй повинен бути виключений iз подальшого розгляду. Множина допустимих розв’язкiв задається системою лiнiйних обмежень, якi також можуть мiстити iнтервальнi оцiнки. Iнтервальнi оцiнки можуть бути присутнi як коефiцiєнти при невiдомих, так i у векторi обмежень. Подiбнi обмеження допустимостi можуть бути накладенi i на цiлi групи критерiїв. Для розв’язання цiєї задачi запропоновано пiдхiд, який ґрунтується на зведеннi її до задачi скалярної оптимiзацiї. На першому кроцi розглядувана задача лексикографiчно-лексикографiчної багатокритерiальної оптимiзацiї з iнтервальними оцiнками та альтернативними складовими зводиться до задачi лексикографiчно-лексикографiчної оптимiзацiї з лексикографiчними обмеженнями без iнтервальних оцiнок. На другому кроцi дана задача може бути зведена до лiнiйної задачi лексикографiчної оптимiзацiї, яка у свою чергу може бути зведена до звичайної задачi лiнiйного програмування. Перехiд вiд задачi лексикографiчно-лексикографiчної оптимiзацiї з iнтервальними оцiнками до задачi лексикографiчно-лексикографiчної оптимiзацiї з лексикографiчними обмеженнями i у подальшому до задачi скалярної оптимiзацiї є можливим завдяки використанню зваженої суми критерiїв з вiдповiдними коефiцiєнтами. З використанням зваженої суми i вiдповiдних коефiцiєнтiв вдається також врахувати i обмеження допустимостi.http://visnyk-math.uzhnu.edu.ua/article/view/189720задача лексикографiчно-лексикографiчної оптимiзацiїiнтервальнi коефiцiєнтиальтернативнi критерiї
spellingShingle А. Ю. Брила
On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
Науковий вісник Ужгородського університету. Серія: Математика і інформатика
задача лексикографiчно-лексикографiчної оптимiзацiї
iнтервальнi коефiцiєнти
альтернативнi критерiї
title On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
title_full On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
title_fullStr On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
title_full_unstemmed On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
title_short On solving a Lexicographic-Lexicographical Optimization Problem with interval coefficients and alternative criteria
title_sort on solving a lexicographic lexicographical optimization problem with interval coefficients and alternative criteria
topic задача лексикографiчно-лексикографiчної оптимiзацiї
iнтервальнi коефiцiєнти
альтернативнi критерiї
url http://visnyk-math.uzhnu.edu.ua/article/view/189720
work_keys_str_mv AT aûbrila onsolvingalexicographiclexicographicaloptimizationproblemwithintervalcoefficientsandalternativecriteria