Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three

In this paper, we address the inverse of a true fourth-degree permutation polynomial (4-PP), modulo a positive integer of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><...

Full description

Bibliographic Details
Main Authors: Lucian Trifina, Daniela Tărniceriu, Ana-Mirela Rotopănescu
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/4/1/20
_version_ 1827307208520499200
author Lucian Trifina
Daniela Tărniceriu
Ana-Mirela Rotopănescu
author_facet Lucian Trifina
Daniela Tărniceriu
Ana-Mirela Rotopănescu
author_sort Lucian Trifina
collection DOAJ
description In this paper, we address the inverse of a true fourth-degree permutation polynomial (4-PP), modulo a positive integer of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><msub><mi>k</mi><mi>L</mi></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>L</mi></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula> is a product of different prime numbers greater than three. Some constraints are considered for the 4-PPs to avoid some complicated coefficients’ conditions. With the fourth- and third-degree coefficients of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula>, respectively, we prove that the inverse PP is (I) a 4-PP when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> or when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and (II) a 5-PP when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-04-24T18:36:28Z
format Article
id doaj.art-3b648644ada14a7dbb034c28bc0ec281
institution Directory Open Access Journal
issn 2673-9909
language English
last_indexed 2024-04-24T18:36:28Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series AppliedMath
spelling doaj.art-3b648644ada14a7dbb034c28bc0ec2812024-03-27T13:18:51ZengMDPI AGAppliedMath2673-99092024-03-014138339310.3390/appliedmath4010020Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than ThreeLucian Trifina0Daniela Tărniceriu1Ana-Mirela Rotopănescu2Department of Telecommunications and Information Technologies, “Gheorghe Asachi” Technical University, 700506 Iasi, RomaniaDepartment of Telecommunications and Information Technologies, “Gheorghe Asachi” Technical University, 700506 Iasi, RomaniaDepartment of Telecommunications and Information Technologies, “Gheorghe Asachi” Technical University, 700506 Iasi, RomaniaIn this paper, we address the inverse of a true fourth-degree permutation polynomial (4-PP), modulo a positive integer of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><msub><mi>k</mi><mi>L</mi></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>L</mi></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula> is a product of different prime numbers greater than three. Some constraints are considered for the 4-PPs to avoid some complicated coefficients’ conditions. With the fourth- and third-degree coefficients of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>Ψ</mo></mrow></semantics></math></inline-formula>, respectively, we prove that the inverse PP is (I) a 4-PP when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> or when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and (II) a 5-PP when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>4</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mn>3</mn><mo>,</mo><mi>f</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2673-9909/4/1/20permutation polynomial (PP)fourth-degree PPinverse PP
spellingShingle Lucian Trifina
Daniela Tărniceriu
Ana-Mirela Rotopănescu
Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
AppliedMath
permutation polynomial (PP)
fourth-degree PP
inverse PP
title Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
title_full Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
title_fullStr Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
title_full_unstemmed Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
title_short Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three
title_sort inverses for fourth degree permutation polynomials modulo 32ψ or 96ψ with ψ as a product of different prime numbers greater than three
topic permutation polynomial (PP)
fourth-degree PP
inverse PP
url https://www.mdpi.com/2673-9909/4/1/20
work_keys_str_mv AT luciantrifina inversesforfourthdegreepermutationpolynomialsmodulo32psor96pswithpsasaproductofdifferentprimenumbersgreaterthanthree
AT danielatarniceriu inversesforfourthdegreepermutationpolynomialsmodulo32psor96pswithpsasaproductofdifferentprimenumbersgreaterthanthree
AT anamirelarotopanescu inversesforfourthdegreepermutationpolynomialsmodulo32psor96pswithpsasaproductofdifferentprimenumbersgreaterthanthree