Summary: | Abstract Background Gallbladder cancer (GBC) is the most malignant cancer occurring in the biliary tract cancer featured with undesirable prognosis, in which most patients die within a year of cholecystectomy. Long noncoding RNAs (lncRNAs) function as critical regulators of multiple stages of cancers. Herein, the mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in GBC is investigated. Methods Microarray-based analysis initially provided data suggesting that the expression of MALAT1 was up-regulated while that of the ABI family member 3 binding protein (ABI3BP) was down-regulated in GBC tissues and cell lines. Kaplan-Meier method was then adopted to analyze the relationship between the MALAT1 expression and overall survival and disease-free survival of patients with GBC. A set of in vitro and in vivo experiments were conducted by transducing ABI3BP-vector or sh-MALAT1 into GBC cells. Results The results confirmed that the cancer prevention effects triggered by restored ABI3BP and depleted MALAT1 as evidenced by suppressed cell growth and enhanced cell senescence. MALAT1 was observed to down-regulate ABI3BP expression through recruitment of the enhancer of zeste homolog 2 (EZH2) to the ABI3BP promoter region while the silencing of MALAT1 or suppression of H3K27 methylation was observed to promote the expression of ABI3BP. Furthermore, GBC patients with high expression of MALAT1 indicated poor prognosis. Conclusion The current study clarifies that MALAT1 silencing and ABI3BP elevation impede the GBC development through the H3K27 methylation suppression induced by EZH2, highlighting a promising competitive paradigm for therapeutic approaches of GBC.
|