A Note on the Summation of the Incomplete Gamma Function

We examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions h...

Full description

Bibliographic Details
Main Authors: Robert Reynolds, Allan Stauffer
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/12/2369
_version_ 1797500289621688320
author Robert Reynolds
Allan Stauffer
author_facet Robert Reynolds
Allan Stauffer
author_sort Robert Reynolds
collection DOAJ
description We examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions have an asymmetrical zero distribution.
first_indexed 2024-03-10T03:59:46Z
format Article
id doaj.art-3b78184908d54e30996d442c4dab3a3b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T03:59:46Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-3b78184908d54e30996d442c4dab3a3b2023-11-23T10:46:12ZengMDPI AGSymmetry2073-89942021-12-011312236910.3390/sym13122369A Note on the Summation of the Incomplete Gamma FunctionRobert Reynolds0Allan Stauffer1Department of Mathematics and Statistics, York University, Toronto, ON M3J1P3, CanadaDepartment of Mathematics and Statistics, York University, Toronto, ON M3J1P3, CanadaWe examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions have an asymmetrical zero distribution.https://www.mdpi.com/2073-8994/13/12/2369Hurwitz-Lerch zeta functionincomplete gamma functionCatalan’s constantApréy’s constantCauchy integralcontour integral
spellingShingle Robert Reynolds
Allan Stauffer
A Note on the Summation of the Incomplete Gamma Function
Symmetry
Hurwitz-Lerch zeta function
incomplete gamma function
Catalan’s constant
Apréy’s constant
Cauchy integral
contour integral
title A Note on the Summation of the Incomplete Gamma Function
title_full A Note on the Summation of the Incomplete Gamma Function
title_fullStr A Note on the Summation of the Incomplete Gamma Function
title_full_unstemmed A Note on the Summation of the Incomplete Gamma Function
title_short A Note on the Summation of the Incomplete Gamma Function
title_sort note on the summation of the incomplete gamma function
topic Hurwitz-Lerch zeta function
incomplete gamma function
Catalan’s constant
Apréy’s constant
Cauchy integral
contour integral
url https://www.mdpi.com/2073-8994/13/12/2369
work_keys_str_mv AT robertreynolds anoteonthesummationoftheincompletegammafunction
AT allanstauffer anoteonthesummationoftheincompletegammafunction
AT robertreynolds noteonthesummationoftheincompletegammafunction
AT allanstauffer noteonthesummationoftheincompletegammafunction