Increased Plasmatic Levels of PSA-Expressing Exosomes Distinguish Prostate Cancer Patients from Benign Prostatic Hyperplasia: A Prospective Study

Prostate Specific Antigen (PSA) fails to discriminate between benign prostatic hyperplasia (BPH) and Prostate Cancer (PCa), resulting in large numbers of unnecessary biopsies and missed cancer diagnoses. Nanovesicles called exosomes are directly detectable in patient plasma and here we explore the p...

Full description

Bibliographic Details
Main Authors: Mariantonia Logozzi, Daniela F. Angelini, Alessandro Giuliani, Davide Mizzoni, Rossella Di Raimo, Martina Maggi, Alessandro Gentilucci, Vittorio Marzio, Stefano Salciccia, Giovanna Borsellino, Luca Battistini, Alessandro Sciarra, Stefano Fais
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/11/10/1449
Description
Summary:Prostate Specific Antigen (PSA) fails to discriminate between benign prostatic hyperplasia (BPH) and Prostate Cancer (PCa), resulting in large numbers of unnecessary biopsies and missed cancer diagnoses. Nanovesicles called exosomes are directly detectable in patient plasma and here we explore the potential use of plasmatic exosomes expressing PSA (Exo-PSA) in distinguishing healthy individuals, BPH, and PCa. Exosomes were obtained from plasma samples of 80 PCa, 80 BPH, and 80 healthy donors (CTR). Nanoparticle Tracking Analysis (NTA), immunocapture-based ELISA (IC-ELISA), and nanoscale flow-cytometry (NSFC), were exploited to detect and characterize plasmatic exosomes. Statistical analysis showed that plasmatic exosomes expressing both CD81 and PSA were significantly higher in PCa as compared to both BPH and CTR, reaching 100% specificity and sensitivity in distinguishing PCa patients from healthy individuals. IC-ELISA, NSFC, and Exo-PSA consensus score (EXOMIX) showed 98% to 100% specificity and sensitivity for BPH-PCa discrimination. This study outperforms the conventional PSA test with a minimally invasive widely exploitable approach.
ISSN:2072-6694